Problem:
h(X,Z) -> f(X,s(X),Z)
f(X,Y,g(X,Y)) -> h(0(),g(X,Y))
g(0(),Y) -> 0()
g(X,s(Y)) -> g(X,Y)
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[0] = 0,
[g](x0, x1) = 4x0 + x1 + 1,
[f](x0, x1, x2) = 4x0 + x1 + x2 + 1,
[s](x0) = x0,
[h](x0, x1) = 5x0 + x1 + 1
orientation:
h(X,Z) = 5X + Z + 1 >= 5X + Z + 1 = f(X,s(X),Z)
f(X,Y,g(X,Y)) = 8X + 2Y + 2 >= 4X + Y + 2 = h(0(),g(X,Y))
g(0(),Y) = Y + 1 >= 0 = 0()
g(X,s(Y)) = 4X + Y + 1 >= 4X + Y + 1 = g(X,Y)
problem:
h(X,Z) -> f(X,s(X),Z)
f(X,Y,g(X,Y)) -> h(0(),g(X,Y))
g(X,s(Y)) -> g(X,Y)
Matrix Interpretation Processor: dim=2
interpretation:
[0]
[0] = [0],
[2 3] [2 1]
[g](x0, x1) = [0 1]x0 + [2 0]x1,
[1 2] [1 0] [1 0]
[f](x0, x1, x2) = [0 0]x0 + [0 0]x1 + [1 2]x2,
[1 0] [0]
[s](x0) = [2 1]x0 + [1],
[3 2] [1 0]
[h](x0, x1) = [0 0]x0 + [1 2]x1
orientation:
[3 2] [1 0] [2 2] [1 0]
h(X,Z) = [0 0]X + [1 2]Z >= [0 0]X + [1 2]Z = f(X,s(X),Z)
[3 5] [3 1] [2 3] [2 1]
f(X,Y,g(X,Y)) = [2 5]X + [6 1]Y >= [2 5]X + [6 1]Y = h(0(),g(X,Y))
[2 3] [4 1] [1] [2 3] [2 1]
g(X,s(Y)) = [0 1]X + [2 0]Y + [0] >= [0 1]X + [2 0]Y = g(X,Y)
problem:
h(X,Z) -> f(X,s(X),Z)
f(X,Y,g(X,Y)) -> h(0(),g(X,Y))
Unfolding Processor:
loop length: 2
terms:
h(0(),g(0(),s(0())))
f(0(),s(0()),g(0(),s(0())))
context: []
substitution:
Qed