(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

*(X, +(Y, 1)) → +(*(X, +(Y, *(1, 0))), X)
*(X, 1) → X
*(X, 0) → X
*(X, 0) → 0

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(X, +(Y, 1)) → *1(X, +(Y, *(1, 0)))
*1(X, +(Y, 1)) → *1(1, 0)

The TRS R consists of the following rules:

*(X, +(Y, 1)) → +(*(X, +(Y, *(1, 0))), X)
*(X, 1) → X
*(X, 0) → X
*(X, 0) → 0

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

*1(X, +(Y, 1)) → *1(X, +(Y, *(1, 0)))

The TRS R consists of the following rules:

*(X, +(Y, 1)) → +(*(X, +(Y, *(1, 0))), X)
*(X, 1) → X
*(X, 0) → X
*(X, 0) → 0

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [ ] on the rule
*1(x1, +(x0, 1))[ ]n[ ] → *1(x1, +(x0, 1))[ ]n[ ]
This rule is correct for the QDP as the following derivation shows:

*1(x1, +(x0, 1))[ ]n[ ] → *1(x1, +(x0, 1))[ ]n[ ]
    by Narrowing at position: [1,1]
        intermediate steps: Instantiation
        *1(X, +(Y, 1))[ ]n[ ] → *1(X, +(Y, *(1, 0)))[ ]n[ ]
            by OriginalRule from TRS P

        intermediate steps: Instantiation - Instantiation
        *(X, 0)[ ]n[ ] → X[ ]n[ ]
            by OriginalRule from TRS R

(6) NO