Problem:
f(X,g(X)) -> f(1(),g(X))
g(1()) -> g(0())
Proof:
Matrix Interpretation Processor: dim=3
interpretation:
[0]
[0] = [0]
[0],
[0]
[1] = [0]
[1],
[1 1 0] [1 1 1]
[f](x0, x1) = [0 0 0]x0 + [0 0 1]x1
[1 0 0] [0 0 0] ,
[1 1 1] [0]
[g](x0) = [1 0 1]x0 + [1]
[0 0 1] [1]
orientation:
[3 2 3] [2] [2 1 3] [2]
f(X,g(X)) = [0 0 1]X + [1] >= [0 0 1]X + [1] = f(1(),g(X))
[1 0 0] [0] [0 0 0] [0]
[1] [0]
g(1()) = [2] >= [1] = g(0())
[2] [1]
problem:
f(X,g(X)) -> f(1(),g(X))
Unfolding Processor:
loop length: 1
terms:
f(1(),g(1()))
context: []
substitution:
Qed