Problem:
f(x,x) -> f(i(x),g(g(x)))
f(x,y) -> x
g(x) -> i(x)
f(x,i(x)) -> f(x,x)
f(i(x),i(g(x))) -> a()
Proof:
Matrix Interpretation Processor: dim=1
interpretation:
[a] = 2,
[g](x0) = x0,
[i](x0) = x0,
[f](x0, x1) = 2x0 + 2x1 + 2
orientation:
f(x,x) = 4x + 2 >= 4x + 2 = f(i(x),g(g(x)))
f(x,y) = 2x + 2y + 2 >= x = x
g(x) = x >= x = i(x)
f(x,i(x)) = 4x + 2 >= 4x + 2 = f(x,x)
f(i(x),i(g(x))) = 4x + 2 >= 2 = a()
problem:
f(x,x) -> f(i(x),g(g(x)))
g(x) -> i(x)
f(x,i(x)) -> f(x,x)
f(i(x),i(g(x))) -> a()
Matrix Interpretation Processor: dim=1
interpretation:
[a] = 0,
[g](x0) = x0,
[i](x0) = x0,
[f](x0, x1) = x0 + x1 + 5
orientation:
f(x,x) = 2x + 5 >= 2x + 5 = f(i(x),g(g(x)))
g(x) = x >= x = i(x)
f(x,i(x)) = 2x + 5 >= 2x + 5 = f(x,x)
f(i(x),i(g(x))) = 2x + 5 >= 0 = a()
problem:
f(x,x) -> f(i(x),g(g(x)))
g(x) -> i(x)
f(x,i(x)) -> f(x,x)
Unfolding Processor:
loop length: 4
terms:
f(x92,x92)
f(i(x92),g(g(x92)))
f(i(x92),i(g(x92)))
f(i(x92),i(i(x92)))
context: []
substitution:
x92 -> i(x92)
Qed