The TRS could be proven non-terminating. The proof took 197 ms.

The following reduction sequence is a witness for non-termination:

zeros# →* zeros#

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (0ms).
 | – Problem 2 was processed with processor SubtermCriterion (0ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (2ms), SubtermCriterion (1ms), DependencyGraph (1ms), PolynomialOrdering (29ms), DependencyGraph (1ms), PolynomialOrdering (27ms), DependencyGraph (1ms), PolynomialOrdering (14ms), DependencyGraph (1ms), ReductionPairSAT (16ms), DependencyGraph (1ms), SizeChangePrinciple (1ms), BackwardsNarrowing (1ms), BackwardInstantiation (2ms), ForwardInstantiation (3ms), Propagation (3ms)].
 | – Problem 4 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

incr#(cons(X, L))incr#(L)nats#zeros#
adx#(cons(X, L))incr#(cons(X, adx(L)))zeros#zeros#
adx#(cons(X, L))adx#(L)nats#adx#(zeros)

Rewrite Rules

incr(nil)nilincr(cons(X, L))cons(s(X), incr(L))
adx(nil)niladx(cons(X, L))incr(cons(X, adx(L)))
natsadx(zeros)zeroscons(0, zeros)
head(cons(X, L))Xtail(cons(X, L))L

Original Signature

Termination of terms over the following signature is verified: nats, 0, s, zeros, adx, incr, head, tail, nil, cons

Strategy


Parameters


The following SCCs where found

incr#(cons(X, L)) → incr#(L)

zeros# → zeros#

adx#(cons(X, L)) → adx#(L)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

incr#(cons(X, L))incr#(L)

Rewrite Rules

incr(nil)nilincr(cons(X, L))cons(s(X), incr(L))
adx(nil)niladx(cons(X, L))incr(cons(X, adx(L)))
natsadx(zeros)zeroscons(0, zeros)
head(cons(X, L))Xtail(cons(X, L))L

Original Signature

Termination of terms over the following signature is verified: nats, 0, s, zeros, adx, incr, head, tail, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

incr#(cons(X, L))incr#(L)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

adx#(cons(X, L))adx#(L)

Rewrite Rules

incr(nil)nilincr(cons(X, L))cons(s(X), incr(L))
adx(nil)niladx(cons(X, L))incr(cons(X, adx(L)))
natsadx(zeros)zeroscons(0, zeros)
head(cons(X, L))Xtail(cons(X, L))L

Original Signature

Termination of terms over the following signature is verified: nats, 0, s, zeros, adx, incr, head, tail, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

adx#(cons(X, L))adx#(L)