(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, Z)
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
FROM(X) → FROM(s(X))
SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
SEL1(0, cons(X, Z)) → QUOTE(X)
FIRST1(s(X), cons(Y, Z)) → QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, Z)
QUOTE1(cons(X, Z)) → QUOTE(X)
QUOTE1(cons(X, Z)) → QUOTE1(Z)
QUOTE(s(X)) → QUOTE(X)
QUOTE(sel(X, Z)) → SEL1(X, Z)
QUOTE1(first(X, Z)) → FIRST1(X, Z)
UNQUOTE(s1(X)) → UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) → FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) → UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE(s1(X)) → UNQUOTE(X)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • UNQUOTE(s1(X)) → UNQUOTE(X)
    The graph contains the following edges 1 > 1

(7) YES

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
    The graph contains the following edges 1 > 1

(10) YES

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL1(0, cons(X, Z)) → QUOTE(X)
QUOTE(s(X)) → QUOTE(X)
QUOTE(sel(X, Z)) → SEL1(X, Z)
SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • QUOTE(sel(X, Z)) → SEL1(X, Z)
    The graph contains the following edges 1 > 1, 1 > 2

  • QUOTE(s(X)) → QUOTE(X)
    The graph contains the following edges 1 > 1

  • SEL1(s(X), cons(Y, Z)) → SEL1(X, Z)
    The graph contains the following edges 1 > 1, 2 > 2

  • SEL1(0, cons(X, Z)) → QUOTE(X)
    The graph contains the following edges 2 > 1

(13) YES

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST1(s(X), cons(Y, Z)) → FIRST1(X, Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FIRST1(s(X), cons(Y, Z)) → FIRST1(X, Z)
    The graph contains the following edges 1 > 1, 2 > 2

(16) YES

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(cons(X, Z)) → QUOTE1(Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • QUOTE1(cons(X, Z)) → QUOTE1(Z)
    The graph contains the following edges 1 > 1

(19) YES

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / s(x0)] on the rule
FROM(s(x0))[ ]n[ ] → FROM(s(x0))[ ]n[x0 / s(x0)]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Simplify mu) - Instantiate mu - Instantiation
FROM(X)[ ]n[ ] → FROM(s(X))[ ]n[ ]
    by OriginalRule from TRS P

(22) NO

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
    The graph contains the following edges 1 > 1, 2 > 2

(25) YES

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, Z)
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, Z))
quote(0) → 01
quote1(cons(X, Z)) → cons1(quote(X), quote1(Z))
quote1(nil) → nil1
quote(s(X)) → s1(quote(X))
quote(sel(X, Z)) → sel1(X, Z)
quote1(first(X, Z)) → first1(X, Z)
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SEL(s(X), cons(Y, Z)) → SEL(X, Z)
    The graph contains the following edges 1 > 1, 2 > 2

(28) YES