(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
DBLS(cons(X, Y)) → DBL(X)
DBLS(cons(X, Y)) → DBLS(Y)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
INDX(cons(X, Y), Z) → SEL(X, Z)
INDX(cons(X, Y), Z) → INDX(Y, Z)
FROM(X) → FROM(s(X))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 2 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
R is empty.
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
X) →
FROM(
s(
X)) we obtained the following new rules [LPAR04]:
FROM(s(z0)) → FROM(s(s(z0)))
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(z0)) → FROM(s(s(z0)))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
s(
z0)) →
FROM(
s(
s(
z0))) we obtained the following new rules [LPAR04]:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FROM(
s(
s(
z0))) evaluates to t =
FROM(
s(
s(
s(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [z0 / s(z0)]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FROM(s(s(z0))) to FROM(s(s(s(z0)))).
(17) NO
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(19) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
R is empty.
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(21) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SEL(s(X), cons(Y, Z)) → SEL(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → INDX(Y, Z)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → INDX(Y, Z)
R is empty.
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(28) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → INDX(Y, Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INDX(cons(X, Y), Z) → INDX(Y, Z)
The graph contains the following edges 1 > 1, 2 >= 2
(31) YES
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(33) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
R is empty.
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(35) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBL(s(X)) → DBL(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DBL(s(X)) → DBL(X)
The graph contains the following edges 1 > 1
(38) YES
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBLS(cons(X, Y)) → DBLS(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBLS(cons(X, Y)) → DBLS(Y)
R is empty.
The set Q consists of the following terms:
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
We have to consider all minimal (P,Q,R)-chains.
(42) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
dbl(0)
dbl(s(x0))
dbls(nil)
dbls(cons(x0, x1))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
indx(nil, x0)
indx(cons(x0, x1), x2)
from(x0)
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DBLS(cons(X, Y)) → DBLS(Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DBLS(cons(X, Y)) → DBLS(Y)
The graph contains the following edges 1 > 1
(45) YES