(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / s(x0)] on the rule
FROM(s(x0))[ ]n[ ] → FROM(s(x0))[ ]n[x0 / s(x0)]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Simplify mu) - Instantiate mu - Instantiation
FROM(X)[ ]n[ ] → FROM(s(X))[ ]n[ ]
    by OriginalRule from TRS P

(7) NO

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
    The graph contains the following edges 1 > 1, 2 > 2

(10) YES

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD(s(X), Y) → ADD(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES