(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))
LENGTH(cons(X, Y)) → LENGTH1(Y)
LENGTH1(X) → LENGTH(X)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH1(X) → LENGTH(X)
LENGTH(cons(X, Y)) → LENGTH1(Y)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LENGTH(cons(X, Y)) → LENGTH1(Y)
    The graph contains the following edges 1 > 1

  • LENGTH1(X) → LENGTH(X)
    The graph contains the following edges 1 >= 1

(7) YES

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 0,
σ' = [ ], and μ' = [x0 / s(x0)] on the rule
FROM(s(x0))[ ]n[ ] → FROM(s(x0))[ ]n[x0 / s(x0)]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Simplify mu) - Instantiate mu - Instantiation
FROM(X)[ ]n[ ] → FROM(s(X))[ ]n[ ]
    by OriginalRule from TRS P

(10) NO