(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
LENGTH(cons(X, Y)) → LENGTH1(Y)
LENGTH1(X) → LENGTH(X)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(X) → LENGTH(X)
LENGTH(cons(X, Y)) → LENGTH1(Y)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(X) → LENGTH(X)
LENGTH(cons(X, Y)) → LENGTH1(Y)
R is empty.
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(X) → LENGTH(X)
LENGTH(cons(X, Y)) → LENGTH1(Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(X, Y)) → LENGTH1(Y)
The graph contains the following edges 1 > 1
- LENGTH1(X) → LENGTH(X)
The graph contains the following edges 1 >= 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
R is empty.
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
X) →
FROM(
s(
X)) we obtained the following new rules [LPAR04]:
FROM(s(z0)) → FROM(s(s(z0)))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(z0)) → FROM(s(s(z0)))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
FROM(
s(
z0)) →
FROM(
s(
s(
z0))) we obtained the following new rules [LPAR04]:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(s(s(z0))) → FROM(s(s(s(z0))))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FROM(
s(
s(
z0))) evaluates to t =
FROM(
s(
s(
s(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [z0 / s(z0)]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FROM(s(s(z0))) to FROM(s(s(s(z0)))).
(24) NO