Problem:
+(1(),x) -> +(+(0(),1()),x)
+(0(),x) -> x
Proof:
Uncurry Processor:
11(x) -> 02(1(),x)
02(x,x3) -> +(x,x3)
01(x) -> x
+(1(),x2) -> 11(x2)
+(01(x1),x2) -> 02(x1,x2)
+(0(),x2) -> 01(x2)
Matrix Interpretation Processor: dim=1
interpretation:
[02](x0, x1) = x0 + x1,
[01](x0) = x0 + 5,
[11](x0) = x0,
[0] = 6,
[+](x0, x1) = x0 + x1,
[1] = 0
orientation:
11(x) = x >= x = 02(1(),x)
02(x,x3) = x + x3 >= x + x3 = +(x,x3)
01(x) = x + 5 >= x = x
+(1(),x2) = x2 >= x2 = 11(x2)
+(01(x1),x2) = x1 + x2 + 5 >= x1 + x2 = 02(x1,x2)
+(0(),x2) = x2 + 6 >= x2 + 5 = 01(x2)
problem:
11(x) -> 02(1(),x)
02(x,x3) -> +(x,x3)
+(1(),x2) -> 11(x2)
Unfolding Processor:
loop length: 3
terms:
11(x26)
02(1(),x26)
+(1(),x26)
context: []
substitution:
x26 -> x26
Qed