Problem: +(1(),x) -> +(+(0(),1()),x) +(0(),x) -> x Proof: Uncurry Processor: 11(x) -> 02(1(),x) 02(x,x3) -> +(x,x3) 01(x) -> x +(1(),x2) -> 11(x2) +(01(x1),x2) -> 02(x1,x2) +(0(),x2) -> 01(x2) Matrix Interpretation Processor: dim=1 interpretation: [02](x0, x1) = x0 + x1, [01](x0) = x0 + 5, [11](x0) = x0, [0] = 6, [+](x0, x1) = x0 + x1, [1] = 0 orientation: 11(x) = x >= x = 02(1(),x) 02(x,x3) = x + x3 >= x + x3 = +(x,x3) 01(x) = x + 5 >= x = x +(1(),x2) = x2 >= x2 = 11(x2) +(01(x1),x2) = x1 + x2 + 5 >= x1 + x2 = 02(x1,x2) +(0(),x2) = x2 + 6 >= x2 + 5 = 01(x2) problem: 11(x) -> 02(1(),x) 02(x,x3) -> +(x,x3) +(1(),x2) -> 11(x2) Unfolding Processor: loop length: 3 terms: 11(x26) 02(1(),x26) +(1(),x26) context: [] substitution: x26 -> x26 Qed