let R be the TRS under consideration

+(_1,+(_2,_3)) -> +(+(_1,_2),_3) is in elim_R(R)
let r0 be the right-hand side of this rule
p0 = epsilon is a position in r0
we have r0|p0 = +(+(_1,_2),_3)
+(+(_4,*(_5,_6)),*(_5,_7)) -> +(_4,*(_5,+(_6,_7))) is in R
let l'0 be the left-hand side of this rule
theta0 = {_1/_4, _2/*(_5,_6), _3/*(_5,_7)} is a mgu of r0|p0 and l'0

==> +(_1,+(*(_2,_3),*(_2,_4))) -> +(_1,*(_2,+(_3,_4))) is in EU_R^1
let r1 be the right-hand side of this rule
p1 = 1 is a position in r1
we have r1|p1 = *(_2,+(_3,_4))
*(_5,+(_6,_7)) -> +(*(_5,_6),*(_5,_7)) is in R
let l'1 be the left-hand side of this rule
theta1 = {_2/_5, _3/_6, _4/_7} is a mgu of r1|p1 and l'1

==> +(_1,+(*(_2,_3),*(_2,_4))) -> +(_1,+(*(_2,_3),*(_2,_4))) is in EU_R^2
let l be the left-hand side and r be the right-hand side of this rule
let p = epsilon
let theta = {}
let theta' = {}
we have r|p = +(_1,+(*(_2,_3),*(_2,_4))) and
theta'(theta(l)) = theta(r|p)
so, theta(l) = +(_1,+(*(_2,_3),*(_2,_4))) is non-terminating w.r.t. R

Termination disproved by the forward process
proof stopped at iteration i=2, depth k=3
12 rule(s) generated