let R be the TRS under consideration ifappend(_1,_2,false) -> append(tl(_1),_2) is in elim_R(R) let r0 be the right-hand side of this rule p0 = 0 is a position in r0 we have r0|p0 = tl(_1) tl(cons(_3,_4)) -> cons(_3,_4) is in R let l'0 be the left-hand side of this rule theta0 = {_1/cons(_3,_4)} is a mgu of r0|p0 and l'0 ==> ifappend(cons(_1,_2),_3,false) -> append(cons(_1,_2),_3) is in EU_R^1 let r1 be the right-hand side of this rule p1 = epsilon is a position in r1 we have r1|p1 = append(cons(_1,_2),_3) append(_4,_5) -> ifappend(_4,_5,is_empty(_4)) is in R let l'1 be the left-hand side of this rule theta1 = {_3/_5, _4/cons(_1,_2)} is a mgu of r1|p1 and l'1 ==> ifappend(cons(_1,_2),_3,false) -> ifappend(cons(_1,_2),_3,is_empty(cons(_1,_2))) is in EU_R^2 let r2 be the right-hand side of this rule p2 = 2 is a position in r2 we have r2|p2 = is_empty(cons(_1,_2)) is_empty(cons(_4,_5)) -> false is in R let l'2 be the left-hand side of this rule theta2 = {_1/_4, _2/_5} is a mgu of r2|p2 and l'2 ==> ifappend(cons(_1,_2),_3,false) -> ifappend(cons(_1,_2),_3,false) is in EU_R^3 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {} let theta' = {} we have r|p = ifappend(cons(_1,_2),_3,false) and theta'(theta(l)) = theta(r|p) so, theta(l) = ifappend(cons(_1,_2),_3,false) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=3, depth k=3 560 rule(s) generated