(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → cons(x, l)
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → cons(x, l)
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))
append(x0, x1)
ifappend(x0, x1, true)
ifappend(x0, x1, false)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
APPEND(l1, l2) → IS_EMPTY(l1)
IFAPPEND(l1, l2, false) → HD(l1)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
IFAPPEND(l1, l2, false) → TL(l1)
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → cons(x, l)
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))
append(x0, x1)
ifappend(x0, x1, true)
ifappend(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
hd(cons(x, l)) → x
tl(cons(x, l)) → cons(x, l)
append(l1, l2) → ifappend(l1, l2, is_empty(l1))
ifappend(l1, l2, true) → l2
ifappend(l1, l2, false) → cons(hd(l1), append(tl(l1), l2))
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))
append(x0, x1)
ifappend(x0, x1, true)
ifappend(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(7) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))
append(x0, x1)
ifappend(x0, x1, true)
ifappend(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(9) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
hd(cons(x0, x1))
append(x0, x1)
ifappend(x0, x1, true)
ifappend(x0, x1, false)
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(l1, l2) → IFAPPEND(l1, l2, is_empty(l1))
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(11) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
APPEND(
l1,
l2) →
IFAPPEND(
l1,
l2,
is_empty(
l1)) at position [2] we obtained the following new rules [LPAR04]:
APPEND(nil, y1) → IFAPPEND(nil, y1, true)
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
APPEND(nil, y1) → IFAPPEND(nil, y1, true)
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
The TRS R consists of the following rules:
is_empty(nil) → true
is_empty(cons(x, l)) → false
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
The TRS R consists of the following rules:
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
is_empty(nil)
is_empty(cons(x0, x1))
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
is_empty(nil)
is_empty(cons(x0, x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(l1, l2, false) → APPEND(tl(l1), l2)
The TRS R consists of the following rules:
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(19) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IFAPPEND(
l1,
l2,
false) →
APPEND(
tl(
l1),
l2) at position [0] we obtained the following new rules [LPAR04]:
IFAPPEND(cons(x0, x1), y1, false) → APPEND(cons(x0, x1), y1)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(cons(x0, x1), y1, false) → APPEND(cons(x0, x1), y1)
The TRS R consists of the following rules:
tl(cons(x, l)) → cons(x, l)
The set Q consists of the following terms:
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(cons(x0, x1), y1, false) → APPEND(cons(x0, x1), y1)
R is empty.
The set Q consists of the following terms:
tl(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(23) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tl(cons(x0, x1))
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(x0, x1), y1) → IFAPPEND(cons(x0, x1), y1, false)
IFAPPEND(cons(x0, x1), y1, false) → APPEND(cons(x0, x1), y1)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
IFAPPEND(
cons(
x0',
x1'),
y1',
false) evaluates to t =
IFAPPEND(
cons(
x0',
x1'),
y1',
false)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceIFAPPEND(cons(x0', x1'), y1', false) →
APPEND(
cons(
x0',
x1'),
y1')
with rule
IFAPPEND(
cons(
x0'',
x1''),
y1'',
false) →
APPEND(
cons(
x0'',
x1''),
y1'') at position [] and matcher [
x0'' /
x0',
x1'' /
x1',
y1'' /
y1']
APPEND(cons(x0', x1'), y1') →
IFAPPEND(
cons(
x0',
x1'),
y1',
false)
with rule
APPEND(
cons(
x0,
x1),
y1) →
IFAPPEND(
cons(
x0,
x1),
y1,
false)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(26) NO