let R be the TRS under consideration ap(ap(ap(foldr,_1),_2),ap(ap(cons,_3),_4)) -> ap(ap(_1,_3),ap(ap(ap(foldr,_1),_2),_4)) is in elim_R(R) let r0 be the right-hand side of this rule p0 = 1 is a position in r0 we have r0|p0 = ap(ap(ap(foldr,_1),_2),_4) ap(ap(ap(foldr,_5),_6),nil) -> _6 is in R let l'0 be the left-hand side of this rule theta0 = {_1/_5, _2/_6, _4/nil} is a mgu of r0|p0 and l'0 ==> ap(ap(ap(foldr,_1),_2),ap(ap(cons,_3),nil)) -> ap(ap(_1,_3),_2) is in EU_R^1 let r1 be the right-hand side of this rule p1 = 0 is a position in r1 we have r1|p1 = ap(_1,_3) ap(ap(f,_4),_4) -> ap(ap(_4,ap(f,_4)),ap(ap(cons,_4),nil)) is in R let l'1 be the left-hand side of this rule theta1 = {_1/ap(f,_4), _3/_4} is a mgu of r1|p1 and l'1 ==> ap(ap(ap(foldr,ap(f,_1)),_2),ap(ap(cons,_1),nil)) -> ap(ap(ap(_1,ap(f,_1)),ap(ap(cons,_1),nil)),_2) is in EU_R^2 let l be the left-hand side and r be the right-hand side of this rule let p = epsilon let theta = {_1/foldr, _2/ap(ap(cons,foldr),nil)} let theta' = {} we have r|p = ap(ap(ap(_1,ap(f,_1)),ap(ap(cons,_1),nil)),_2) and theta'(theta(l)) = theta(r|p) so, theta(l) = ap(ap(ap(foldr,ap(f,foldr)),ap(ap(cons,foldr),nil)),ap(ap(cons,foldr),nil)) is non-terminating w.r.t. R Termination disproved by the forward process proof stopped at iteration i=2, depth k=4 6 rule(s) generated