(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(f, x), x) → AP(x, ap(f, x))
AP(ap(f, x), x) → AP(ap(cons, x), nil)
AP(ap(f, x), x) → AP(cons, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(7) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
AP(
ap(
f,
x),
x) →
AP(
ap(
x,
ap(
f,
x)),
ap(
ap(
cons,
x),
nil)) we obtained the following new rules [LPAR04]:
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(9) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
AP(
ap(
ap(
foldr,
g),
h),
ap(
ap(
cons,
x),
xs)) →
AP(
ap(
g,
x),
ap(
ap(
ap(
foldr,
g),
h),
xs)) at position [1] we obtained the following new rules [LPAR04]:
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), nil)) → AP(ap(x0, y2), x1)
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), ap(ap(cons, x2), x3))) → AP(ap(x0, y2), ap(ap(x0, x2), ap(ap(ap(foldr, x0), x1), x3)))
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), nil)) → AP(ap(x0, y2), x1)
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), ap(ap(cons, x2), x3))) → AP(ap(x0, y2), ap(ap(x0, x2), ap(ap(ap(foldr, x0), x1), x3)))
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(11) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
AP(
ap(
ap(
foldr,
g),
h),
ap(
ap(
cons,
x),
xs)) →
AP(
g,
x) we obtained the following new rules [LPAR04]:
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), y_3)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_1)), x3)) → AP(ap(f, ap(foldr, y_0)), ap(foldr, y_1))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), nil)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), ap(ap(cons, y_3), y_4))), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), nil)) → AP(ap(x0, y2), x1)
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), ap(ap(cons, x2), x3))) → AP(ap(x0, y2), ap(ap(x0, x2), ap(ap(ap(foldr, x0), x1), x3)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), y_3)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_1)), x3)) → AP(ap(f, ap(foldr, y_0)), ap(foldr, y_1))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), nil)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), ap(ap(cons, y_3), y_4))), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(13) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
AP(
ap(
ap(
foldr,
g),
h),
ap(
ap(
cons,
x),
xs)) →
AP(
ap(
ap(
foldr,
g),
h),
xs) we obtained the following new rules [LPAR04]:
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), y_3))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), nil))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, x2), ap(ap(cons, ap(foldr, y_2)), y_3))) → AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_2)), y_3))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), nil)) → AP(ap(x0, y2), x1)
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), ap(ap(cons, x2), x3))) → AP(ap(x0, y2), ap(ap(x0, x2), ap(ap(ap(foldr, x0), x1), x3)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), y_3)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_1)), x3)) → AP(ap(f, ap(foldr, y_0)), ap(foldr, y_1))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), nil)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), ap(ap(cons, y_3), y_4))), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), y_3))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), nil))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, x2), ap(ap(cons, ap(foldr, y_2)), y_3))) → AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_2)), y_3))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
(15) MNOCProof (EQUIVALENT transformation)
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, ap(foldr, y_0)), ap(foldr, y_0)) → AP(ap(ap(foldr, y_0), ap(f, ap(foldr, y_0))), ap(ap(cons, ap(foldr, y_0)), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), nil)) → AP(ap(x0, y2), x1)
AP(ap(ap(foldr, x0), x1), ap(ap(cons, y2), ap(ap(cons, x2), x3))) → AP(ap(x0, y2), ap(ap(x0, x2), ap(ap(ap(foldr, x0), x1), x3)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), y_3)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_1)), x3)) → AP(ap(f, ap(foldr, y_0)), ap(foldr, y_1))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), nil)), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_2), ap(ap(cons, y_3), y_4))), x3)) → AP(ap(ap(foldr, y_0), y_1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), y_3))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), y_3))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), nil))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), nil))
AP(ap(ap(foldr, x0), x1), ap(ap(cons, x2), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))) → AP(ap(ap(foldr, x0), x1), ap(ap(cons, y_2), ap(ap(cons, y_3), y_4)))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), y_4)), y_5))
AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, x2), ap(ap(cons, ap(foldr, y_2)), y_3))) → AP(ap(ap(foldr, ap(f, ap(foldr, y_0))), x1), ap(ap(cons, ap(foldr, y_2)), y_3))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), nil)), y_4))
AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, x2), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))) → AP(ap(ap(foldr, ap(ap(foldr, y_0), y_1)), x1), ap(ap(cons, ap(ap(cons, y_3), ap(ap(cons, y_4), y_5))), y_6))
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
AP(
ap(
ap(
f,
foldr),
foldr),
ap(
ap(
cons,
y2),
nil)) evaluates to t =
AP(
ap(
ap(
f,
foldr),
y2),
ap(
ap(
cons,
foldr),
nil))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [y2 / foldr]
Rewriting sequenceAP(ap(ap(f, foldr), foldr), ap(ap(cons, foldr), nil)) →
AP(
ap(
ap(
foldr,
ap(
f,
foldr)),
ap(
ap(
cons,
foldr),
nil)),
ap(
ap(
cons,
foldr),
nil))
with rule
ap(
ap(
f,
x),
x) →
ap(
ap(
x,
ap(
f,
x)),
ap(
ap(
cons,
x),
nil)) at position [0] and matcher [
x /
foldr]
AP(ap(ap(foldr, ap(f, foldr)), ap(ap(cons, foldr), nil)), ap(ap(cons, foldr), nil)) →
AP(
ap(
ap(
f,
foldr),
foldr),
ap(
ap(
cons,
foldr),
nil))
with rule
AP(
ap(
ap(
foldr,
x0),
x1),
ap(
ap(
cons,
y2),
nil)) →
AP(
ap(
x0,
y2),
x1)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(18) NO