(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
The set Q consists of the following terms:
app(app(const, x0), x1)
app(app(app(subst, x0), x1), x2)
app(app(fix, x0), x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(subst, f), g), x) → APP(app(f, x), app(g, x))
APP(app(app(subst, f), g), x) → APP(f, x)
APP(app(app(subst, f), g), x) → APP(g, x)
APP(app(fix, f), x) → APP(app(f, app(fix, f)), x)
APP(app(fix, f), x) → APP(f, app(fix, f))
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
The set Q consists of the following terms:
app(app(const, x0), x1)
app(app(app(subst, x0), x1), x2)
app(app(fix, x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(5) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
APP(
app(
app(
subst,
f),
g),
x) →
APP(
f,
x) we obtained the following new rules [LPAR04]:
APP(app(app(subst, app(app(subst, y_0), y_1)), x1), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, app(fix, y_0)), x1), x2) → APP(app(fix, y_0), x2)
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(subst, f), g), x) → APP(app(f, x), app(g, x))
APP(app(app(subst, f), g), x) → APP(g, x)
APP(app(fix, f), x) → APP(app(f, app(fix, f)), x)
APP(app(fix, f), x) → APP(f, app(fix, f))
APP(app(app(subst, app(app(subst, y_0), y_1)), x1), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, app(fix, y_0)), x1), x2) → APP(app(fix, y_0), x2)
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
The set Q consists of the following terms:
app(app(const, x0), x1)
app(app(app(subst, x0), x1), x2)
app(app(fix, x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(7) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
APP(
app(
app(
subst,
f),
g),
x) →
APP(
g,
x) we obtained the following new rules [LPAR04]:
APP(app(app(subst, x0), app(app(subst, y_0), y_1)), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, x0), app(fix, y_0)), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, app(app(subst, y_0), y_1)), y_2)), x2) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), x2)
APP(app(app(subst, x0), app(app(subst, app(fix, y_0)), y_1)), x2) → APP(app(app(subst, app(fix, y_0)), y_1), x2)
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(subst, f), g), x) → APP(app(f, x), app(g, x))
APP(app(fix, f), x) → APP(app(f, app(fix, f)), x)
APP(app(fix, f), x) → APP(f, app(fix, f))
APP(app(app(subst, app(app(subst, y_0), y_1)), x1), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, app(fix, y_0)), x1), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, y_0), y_1)), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, x0), app(fix, y_0)), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, app(app(subst, y_0), y_1)), y_2)), x2) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), x2)
APP(app(app(subst, x0), app(app(subst, app(fix, y_0)), y_1)), x2) → APP(app(app(subst, app(fix, y_0)), y_1), x2)
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
The set Q consists of the following terms:
app(app(const, x0), x1)
app(app(app(subst, x0), x1), x2)
app(app(fix, x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(9) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
APP(
app(
fix,
f),
x) →
APP(
f,
app(
fix,
f)) we obtained the following new rules [LPAR04]:
APP(app(fix, app(app(subst, y_0), y_1)), x1) → APP(app(app(subst, y_0), y_1), app(fix, app(app(subst, y_0), y_1)))
APP(app(fix, app(fix, y_0)), x1) → APP(app(fix, y_0), app(fix, app(fix, y_0)))
APP(app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)), x1) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)))
APP(app(fix, app(app(subst, app(fix, y_0)), y_1)), x1) → APP(app(app(subst, app(fix, y_0)), y_1), app(fix, app(app(subst, app(fix, y_0)), y_1)))
APP(app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, y_1), y_2)), app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))))
APP(app(fix, app(app(subst, y_0), app(fix, y_1))), x1) → APP(app(app(subst, y_0), app(fix, y_1)), app(fix, app(app(subst, y_0), app(fix, y_1))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))), x1) → APP(app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3)), app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2)), app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))))
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(subst, f), g), x) → APP(app(f, x), app(g, x))
APP(app(fix, f), x) → APP(app(f, app(fix, f)), x)
APP(app(app(subst, app(app(subst, y_0), y_1)), x1), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, app(fix, y_0)), x1), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, y_0), y_1)), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, x0), app(fix, y_0)), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, app(app(subst, y_0), y_1)), y_2)), x2) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), x2)
APP(app(app(subst, x0), app(app(subst, app(fix, y_0)), y_1)), x2) → APP(app(app(subst, app(fix, y_0)), y_1), x2)
APP(app(fix, app(app(subst, y_0), y_1)), x1) → APP(app(app(subst, y_0), y_1), app(fix, app(app(subst, y_0), y_1)))
APP(app(fix, app(fix, y_0)), x1) → APP(app(fix, y_0), app(fix, app(fix, y_0)))
APP(app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)), x1) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)))
APP(app(fix, app(app(subst, app(fix, y_0)), y_1)), x1) → APP(app(app(subst, app(fix, y_0)), y_1), app(fix, app(app(subst, app(fix, y_0)), y_1)))
APP(app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, y_1), y_2)), app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))))
APP(app(fix, app(app(subst, y_0), app(fix, y_1))), x1) → APP(app(app(subst, y_0), app(fix, y_1)), app(fix, app(app(subst, y_0), app(fix, y_1))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))), x1) → APP(app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3)), app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2)), app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))))
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
The set Q consists of the following terms:
app(app(const, x0), x1)
app(app(app(subst, x0), x1), x2)
app(app(fix, x0), x1)
We have to consider all minimal (P,Q,R)-chains.
(11) MNOCProof (EQUIVALENT transformation)
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(subst, f), g), x) → APP(app(f, x), app(g, x))
APP(app(fix, f), x) → APP(app(f, app(fix, f)), x)
APP(app(app(subst, app(app(subst, y_0), y_1)), x1), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, app(fix, y_0)), x1), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, y_0), y_1)), x2) → APP(app(app(subst, y_0), y_1), x2)
APP(app(app(subst, x0), app(fix, y_0)), x2) → APP(app(fix, y_0), x2)
APP(app(app(subst, x0), app(app(subst, app(app(subst, y_0), y_1)), y_2)), x2) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), x2)
APP(app(app(subst, x0), app(app(subst, app(fix, y_0)), y_1)), x2) → APP(app(app(subst, app(fix, y_0)), y_1), x2)
APP(app(fix, app(app(subst, y_0), y_1)), x1) → APP(app(app(subst, y_0), y_1), app(fix, app(app(subst, y_0), y_1)))
APP(app(fix, app(fix, y_0)), x1) → APP(app(fix, y_0), app(fix, app(fix, y_0)))
APP(app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)), x1) → APP(app(app(subst, app(app(subst, y_0), y_1)), y_2), app(fix, app(app(subst, app(app(subst, y_0), y_1)), y_2)))
APP(app(fix, app(app(subst, app(fix, y_0)), y_1)), x1) → APP(app(app(subst, app(fix, y_0)), y_1), app(fix, app(app(subst, app(fix, y_0)), y_1)))
APP(app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, y_1), y_2)), app(fix, app(app(subst, y_0), app(app(subst, y_1), y_2))))
APP(app(fix, app(app(subst, y_0), app(fix, y_1))), x1) → APP(app(app(subst, y_0), app(fix, y_1)), app(fix, app(app(subst, y_0), app(fix, y_1))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))), x1) → APP(app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3)), app(fix, app(app(subst, y_0), app(app(subst, app(app(subst, y_1), y_2)), y_3))))
APP(app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))), x1) → APP(app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2)), app(fix, app(app(subst, y_0), app(app(subst, app(fix, y_1)), y_2))))
The TRS R consists of the following rules:
app(app(const, x), y) → x
app(app(app(subst, f), g), x) → app(app(f, x), app(g, x))
app(app(fix, f), x) → app(app(f, app(fix, f)), x)
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
APP(
app(
app(
fix,
subst),
x'),
x) evaluates to t =
APP(
app(
app(
fix,
subst),
x),
app(
x',
x))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [x' / x, x / app(x', x)]
- Semiunifier: [ ]
Rewriting sequenceAPP(app(app(fix, subst), x'), x) →
APP(
app(
app(
subst,
app(
fix,
subst)),
x'),
x)
with rule
app(
app(
fix,
f'),
x'') →
app(
app(
f',
app(
fix,
f')),
x'') at position [0] and matcher [
f' /
subst,
x'' /
x']
APP(app(app(subst, app(fix, subst)), x'), x) →
APP(
app(
app(
fix,
subst),
x),
app(
x',
x))
with rule
APP(
app(
app(
subst,
f),
g),
x) →
APP(
app(
f,
x),
app(
g,
x))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(14) NO