(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(x))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), x) → F(s(x), round(x))
F(s(x), x) → ROUND(x)
ROUND(s(s(x))) → ROUND(x)
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(x))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ROUND(s(s(x))) → ROUND(x)
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(x))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ROUND(s(s(x))) → ROUND(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ROUND(s(s(x))) → ROUND(x)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), x) → F(s(x), round(x))
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(x))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), x) → F(s(x), round(x))
The TRS R consists of the following rules:
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
F(
s(
0),
round(
0)) evaluates to t =
F(
s(
0),
round(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceF(s(0), round(0)) →
F(
s(
0),
0)
with rule
round(
0) →
0 at position [1] and matcher [ ]
F(s(0), 0) →
F(
s(
0),
round(
0))
with rule
F(
s(
x),
x) →
F(
s(
x),
round(
x))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(14) NO