************************************************** Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4) , deadline = Just (Time -2040393102) } is false because of mirror image R' = { reverse(l) -> reverse(r) | (l -> r) in R } (VAR x1) (RULES 0 q0 0 -> q0 0 0 , h q0 0 -> h q0 0 0 , 0 q1 1 -> q1 0 1 , h q1 1 -> h q1 0 1 , 1 q1 1 -> q1 1 1 , 0 q1 0 -> q2 0 0 , h q1 0 -> h q2 0 0 , 1 q1 0 -> q2 1 0 , 0 q2 1 -> q2 0 1 , h q2 1 -> h q2 0 1 , 1 q2 1 -> q2 1 1 , q2 0 -> 1 q3 , q3 1 -> 1 q3 , q3 0 -> 0 q4 , q4 1 -> 1 q4 , 0 q4 0 -> q5 0 1 , 1 q4 0 -> q5 1 1 , 0 q5 1 -> q1 0 0 , h q5 1 -> h q1 0 0 , 1 q5 1 -> q1 1 0 , q3 h -> q3 0 h , q4 h -> q4 0 h) looping forward closure of length 1 Derivation { lhs = [ h , q0 , 0 ] , rhs = [ h , q0 , 0 , 0 ] , hash_value = -1037175702 , strict = True , steps = [ Step { rule = 1 , position = 0 } ] } this is closure number 14 MAYBE ************************************************** summary satisfy: no strategy annotation satisfy: no theory annotation satisfy: no relative rules linear weights (from simplex method) direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 open: Standard termination ************************************************** detail Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q0 0 -> 0 0 q1 , 1 q0 h -> 0 0 q1 h , 1 q0 1 -> 0 1 q1 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 h -> 1 0 q5 h , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040389993) } follows by satisfy: no strategy annotation from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q0 0 -> 0 0 q1 , 1 q0 h -> 0 0 q1 h , 1 q0 1 -> 0 1 q1 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 h -> 1 0 q5 h , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040389993) } follows by satisfy: no theory annotation from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q0 0 -> 0 0 q1 , 1 q0 h -> 0 0 q1 h , 1 q0 1 -> 0 1 q1 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 h -> 1 0 q5 h , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040389993) } follows by satisfy: no relative rules from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q0 0 -> 0 0 q1 , 1 q0 h -> 0 0 q1 h , 1 q0 1 -> 0 1 q1 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 h -> 1 0 q5 h , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040389993) } follows by linear interpretation (weights, rational numbers): listToFM [ ( 0 , 0 / 1 ) , ( 1 , 0 / 1 ) , ( h , 0 / 1 ) , ( q0 , 1 / 1 ) , ( q1 , 0 / 1 ) , ( q2 , 0 / 1 ) , ( q3 , 0 / 1 ) , ( q4 , 0 / 1 ) , ( q5 , 0 / 1 ) ] from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 h -> 1 0 q5 h , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040394987) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ 0 , 1 ] , [ -inf , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ 0 , 2 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ 0 , 0 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ 0 , 0 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) ] } from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q2 -> h 0 q2 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040394553) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ -inf , 4 ] , [ -inf , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 4 , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ 6 , 4 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ 0 , 4 ] , [ -inf , 0 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ 0 , 5 ] , [ -inf , 0 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ -inf , 4 ] , [ -inf , 0 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ -inf , 4 ] , [ -inf , 0 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ -inf , 4 ] , [ -inf , 0 ] ] ) ] } from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q0 -> h 0 q0 , h q1 -> h 0 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040394178) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ 5 , 1 ] , [ 1 , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ 0 , 3 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ 1 , 0 ] , [ -inf , 4 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ 3 , -inf ] , [ -inf , 4 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 4 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 4 , 4 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 4 ] ] ) ] } from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q1 -> h 0 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040393807) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 0 , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ 2 , 0 ] , [ 2 , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ 4 , -inf ] , [ 0 , 0 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ 0 , 0 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) ] } from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4 , h q5 -> h 0 q5) , deadline = Just (Time -2040393447) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ 4 , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ 0 , 0 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ 4 , 0 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ -inf , 4 ] , [ -inf , 0 ] ] ) ] } from Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 0 q0 1 -> 0 1 q0 , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4) , deadline = Just (Time -2040393102) } follows by Matrix_Interpretation { dimension = 2 , domain = "Matrix.MaxPlus.MaxPlus" , method = Method { select = mkSet [ 1 , 2 ] , letter_form = DR , difference_form = Positive_Or_Both_Zero } , mapping = listToFM [ ( 0 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ 0 , 0 ] ] ) , ( 1 , Matrix ( 2 , 2 ) [ [ -inf , 0 ] , [ -inf , 0 ] ] ) , ( h , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 0 , 0 ] ] ) , ( q0 , Matrix ( 2 , 2 ) [ [ 2 , 0 ] , [ -inf , 0 ] ] ) , ( q1 , Matrix ( 2 , 2 ) [ [ 0 , -inf ] , [ -inf , 0 ] ] ) , ( q2 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ -inf , 0 ] ] ) , ( q3 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 0 , 0 ] ] ) , ( q4 , Matrix ( 2 , 2 ) [ [ -inf , -inf ] , [ 0 , 0 ] ] ) , ( q5 , Matrix ( 2 , 2 ) [ [ 0 , 0 ] , [ -inf , 0 ] ] ) ] } from Open (Claim { termination = Standard , system = (VAR x1) (RULES 0 q0 0 -> 0 0 q0 , 0 q0 h -> 0 0 q0 h , 1 q1 0 -> 1 0 q1 , 1 q1 h -> 1 0 q1 h , 1 q1 1 -> 1 1 q1 , 0 q1 0 -> 0 0 q2 , 0 q1 h -> 0 0 q2 h , 0 q1 1 -> 0 1 q2 , 1 q2 0 -> 1 0 q2 , 1 q2 h -> 1 0 q2 h , 1 q2 1 -> 1 1 q2 , 0 q2 -> q3 1 , 1 q3 -> q3 1 , 0 q3 -> q4 0 , 1 q4 -> q4 1 , 0 q4 0 -> 1 0 q5 , 0 q4 1 -> 1 1 q5 , 1 q5 0 -> 0 0 q1 , 1 q5 h -> 0 0 q1 h , 1 q5 1 -> 0 1 q1 , h q3 -> h 0 q3 , h q4 -> h 0 q4) , deadline = Just (Time -2040393102) }) ************************************************** MAYBE ************************************************** summary satisfy: no strategy annotation satisfy: no theory annotation satisfy: no relative rules linear weights (from simplex method) direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 open: Standard termination ************************************************** ************************************************** statistics: total atomic proof attempts number = 33, total = 49 maximal = [ Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040393505 , end = Time -2040392547 , duration = 9 , success = False } ] successful atomic proof attempts number = 14, total = 21 maximal = [ Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040394101 , end = Time -2040393509 , duration = 5 , success = True } , Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040395987 , end = Time -2040395554 , duration = 4 , success = True } , Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040394447 , end = Time -2040394102 , duration = 3 , success = True } , Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040395178 , end = Time -2040394812 , duration = 3 , success = True } , Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040394807 , end = Time -2040394452 , duration = 3 , success = True } , Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040395553 , end = Time -2040395180 , duration = 3 , success = True } , Log { what = simplex , start = Time -2040392502 , end = Time -2040392494 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392539 , end = Time -2040392530 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392532 , end = Time -2040392516 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392541 , end = Time -2040392540 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392514 , end = Time -2040392503 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392544 , end = Time -2040392534 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040395991 , end = Time -2040395991 , duration = 0 , success = True } , Log { what = simplex , start = Time -2040392529 , end = Time -2040392519 , duration = 0 , success = True } ] failed atomic proof attempts number = 19, total = 28 maximal = [ Log { what = direct (half-strict semi-ring) matrix method domain: Matrix.MaxPlus.MaxPlus, dimension: 2, unknowns <= 7, intermediates <= 15 , start = Time -2040393505 , end = Time -2040392547 , duration = 9 , success = False } ] ************************************************** matchbox general information (including details on proof methods): http://dfa.imn.htwk-leipzig.de/matchbox/ this matchbox implementation uses the SAT solver MiniSat by Niklas Een and Niklas Sörensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ matchbox process information arguments : --solver=/tmp/tmpongfjx/matchbox-2007-06-01/minisat --timeout-command=/tmp/tmpongfjx/matchbox-2007-06-01/timeout --tmpdir=tmp --timeout=60 /tmp/tmp.Vg3YzfYs9B/a.srs started : Thu Jan 26 12:27:57 CET 2012 finished : Thu Jan 26 12:28:37 CET 2012 run system : Linux uc01-11 2.6.32-5-amd64 #1 SMP Wed Jan 12 03:40:32 UTC 2011 x86_64 release date : Fri Jun 1 17:36:44 CEST 2007 build date : Fri Jun 1 17:36:44 CEST 2007 build system : Linux dfa 2.6.8-2-k7 #1 Tue Aug 16 14:00:15 UTC 2005 i686 GNU/Linux used clock time: 40 secs