(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(x, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(true, x, xs) → ADD(and(isNat(x), isList(xs)), x, Cons(x, xs))
ADD(true, x, xs) → AND(isNat(x), isList(xs))
ADD(true, x, xs) → ISNAT(x)
ADD(true, x, xs) → ISLIST(xs)
ISLIST(Cons(x, xs)) → ISLIST(xs)
ISNAT(s(x)) → ISNAT(x)

The TRS R consists of the following rules:

add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(x, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(s(x)) → ISNAT(x)

The TRS R consists of the following rules:

add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(x, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ISNAT(s(x)) → ISNAT(x)
    The graph contains the following edges 1 > 1

(7) YES

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(Cons(x, xs)) → ISLIST(xs)

The TRS R consists of the following rules:

add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(x, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ISLIST(Cons(x, xs)) → ISLIST(xs)
    The graph contains the following edges 1 > 1

(10) YES

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(true, x, xs) → ADD(and(isNat(x), isList(xs)), x, Cons(x, xs))

The TRS R consists of the following rules:

add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(x, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) NonLoopProof (EQUIVALENT transformation)

By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 1,
σ' = [ ], and μ' = [ ] on the rule
ADD(true, 0, Cons(0, zr1))[zr1 / Cons(0, zr1)]n[zr1 / nil] → ADD(true, 0, Cons(0, Cons(0, zr1)))[zr1 / Cons(0, zr1)]n[zr1 / nil]
This rule is correct for the QDP as the following derivation shows:

intermediate steps: Equivalent (Domain Renaming) - Equivalent (Domain Renaming) - Instantiation - Equivalent (Domain Renaming) - Equivalent (Domain Renaming) - Equivalent (Remove Unused)
ADD(true, 0, Cons(x0, zl1))[zl1 / Cons(x0, zl1), zr1 / Cons(x0, zr1)]n[zl1 / nil, zr1 / nil] → ADD(true, 0, Cons(0, Cons(x0, zr1)))[zl1 / Cons(x0, zl1), zr1 / Cons(x0, zr1)]n[zl1 / nil, zr1 / nil]
    by Narrowing at position: [0]
        intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused) - Equivalent (Domain Renaming) - Equivalent (Domain Renaming) - Equivalent (Remove Unused)
        ADD(true, 0, Cons(x0, zl1))[zl1 / Cons(x0, zl1), zr1 / Cons(x0, zr1)]n[zl1 / nil, zr1 / nil] → ADD(and(true, true), 0, Cons(0, Cons(x0, zr1)))[zl1 / Cons(x0, zl1), zr1 / Cons(x0, zr1)]n[zl1 / nil, zr1 / nil]
            by Narrowing at position: [0,0]
                intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused) - Instantiation - Equivalent (Domain Renaming) - Instantiation - Equivalent (Domain Renaming) - Equivalent (Remove Unused)
                ADD(true, x2, Cons(x1, zl1))[zl1 / Cons(x1, zl1), zr1 / Cons(x1, zr1)]n[zl1 / nil, zr1 / nil] → ADD(and(isNat(x2), true), x2, Cons(x2, Cons(x1, zr1)))[zl1 / Cons(x1, zl1), zr1 / Cons(x1, zr1)]n[zl1 / nil, zr1 / nil]
                    by Narrowing at position: [0,1]
                        intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused) - Instantiation - Equivalent (Domain Renaming) - Instantiation - Equivalent (Domain Renaming)
                        ADD(true, x1, Cons(y1, zs1))[zs1 / Cons(y1, zs1)]n[zs1 / y0] → ADD(and(isNat(x1), isList(y0)), x1, Cons(x1, Cons(y1, zs1)))[zs1 / Cons(y1, zs1)]n[zs1 / y0]
                            by Narrowing at position: [0,1]
                                intermediate steps: Instantiate mu - Instantiate Sigma - Instantiation - Instantiation
                                ADD(true, x, xs)[ ]n[ ] → ADD(and(isNat(x), isList(xs)), x, Cons(x, xs))[ ]n[ ]
                                    by OriginalRule from TRS P

                                intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused) - Equivalent (Domain Renaming) - Instantiation - Equivalent (Domain Renaming)
                                isList(Cons(x, xs))[xs / Cons(x, xs)]n[ ] → isList(xs)[ ]n[ ]
                                    by PatternCreation I
                                        isList(Cons(x, xs))[ ]n[ ] → isList(xs)[ ]n[ ]
                                            by OriginalRule from TRS R

                        intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused)
                        isList(nil)[ ]n[ ] → true[ ]n[ ]
                            by OriginalRule from TRS R

                intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused)
                isNat(0)[ ]n[ ] → true[ ]n[ ]
                    by OriginalRule from TRS R

        intermediate steps: Equivalent (Add Unused) - Equivalent (Add Unused)
        and(true, true)[ ]n[ ] → true[ ]n[ ]
            by OriginalRule from TRS R

(13) NO