(0) Obligation:
Clauses:
even(X) :- ','(eq(Y, f(e, f(o, Y))), c(Y, X)).
c(f(e, X1), 0).
c(f(X2, X), s(Y)) :- c(X, Y).
eq(X, X).
Query: even(g)
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
even_in: (b)
c_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(X) → U1_g(X, eq_in_aa(Y, f(e, f(o, Y))))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_g(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(f(e, X1), 0) → c_out_ag(f(e, X1), 0)
c_in_ag(f(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(f(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → even_out_g(X)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
even_out_g(
x1) =
even_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(X) → U1_g(X, eq_in_aa(Y, f(e, f(o, Y))))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_g(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(f(e, X1), 0) → c_out_ag(f(e, X1), 0)
c_in_ag(f(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(f(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → even_out_g(X)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
even_out_g(
x1) =
even_out_g
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(X) → U1_G(X, eq_in_aa(Y, f(e, f(o, Y))))
EVEN_IN_G(X) → EQ_IN_AA(Y, f(e, f(o, Y)))
U1_G(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_G(X, c_in_ag(Y, X))
U1_G(X, eq_out_aa(Y, f(e, f(o, Y)))) → C_IN_AG(Y, X)
C_IN_AG(f(X2, X), s(Y)) → U3_AG(X2, X, Y, c_in_ag(X, Y))
C_IN_AG(f(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
even_in_g(X) → U1_g(X, eq_in_aa(Y, f(e, f(o, Y))))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_g(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(f(e, X1), 0) → c_out_ag(f(e, X1), 0)
c_in_ag(f(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(f(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → even_out_g(X)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
even_out_g(
x1) =
even_out_g
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_G(
x1,
x2) =
U2_G(
x2)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(X) → U1_G(X, eq_in_aa(Y, f(e, f(o, Y))))
EVEN_IN_G(X) → EQ_IN_AA(Y, f(e, f(o, Y)))
U1_G(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_G(X, c_in_ag(Y, X))
U1_G(X, eq_out_aa(Y, f(e, f(o, Y)))) → C_IN_AG(Y, X)
C_IN_AG(f(X2, X), s(Y)) → U3_AG(X2, X, Y, c_in_ag(X, Y))
C_IN_AG(f(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
even_in_g(X) → U1_g(X, eq_in_aa(Y, f(e, f(o, Y))))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_g(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(f(e, X1), 0) → c_out_ag(f(e, X1), 0)
c_in_ag(f(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(f(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → even_out_g(X)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
even_out_g(
x1) =
even_out_g
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_G(
x1,
x2) =
U2_G(
x2)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
C_IN_AG(f(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
even_in_g(X) → U1_g(X, eq_in_aa(Y, f(e, f(o, Y))))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_g(X, eq_out_aa(Y, f(e, f(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(f(e, X1), 0) → c_out_ag(f(e, X1), 0)
c_in_ag(f(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(f(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → even_out_g(X)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
even_out_g(
x1) =
even_out_g
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
C_IN_AG(f(X2, X), s(Y)) → C_IN_AG(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_IN_AG(s(Y)) → C_IN_AG(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- C_IN_AG(s(Y)) → C_IN_AG(Y)
The graph contains the following edges 1 > 1
(12) YES