(0) Obligation:

Clauses:

member(X, .(Y, Xs)) :- member(X, Xs).
member(X, .(X, Xs)).
subset(.(X, Xs), Ys) :- ','(member(X, Ys), subset(Xs, Ys)).
subset([], Ys).

Query: subset(g,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

subsetA_in_gg(.(T21, T7), .(T22, T23)) → U1_gg(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
pB_in_gggg(T21, T23, T7, T22) → U4_gggg(T21, T23, T7, T22, memberC_in_gg(T21, T23))
memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))
U4_gggg(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_gggg(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
subsetA_in_gg(.(T66, T7), .(T66, T67)) → U2_gg(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
subsetA_in_gg([], T73) → subsetA_out_gg([], T73)
U2_gg(T66, T7, T67, subsetA_out_gg(T7, .(T66, T67))) → subsetA_out_gg(.(T66, T7), .(T66, T67))
U5_gggg(T21, T23, T7, T22, subsetA_out_gg(T7, .(T22, T23))) → pB_out_gggg(T21, T23, T7, T22)
U1_gg(T21, T7, T22, T23, pB_out_gggg(T21, T23, T7, T22)) → subsetA_out_gg(.(T21, T7), .(T22, T23))

Pi is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → U1_GG(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
PB_IN_GGGG(T21, T23, T7, T22) → MEMBERC_IN_GG(T21, T23)
MEMBERC_IN_GG(T42, .(T43, T44)) → U3_GG(T42, T43, T44, memberC_in_gg(T42, T44))
MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_GGGG(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → U2_GG(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))

The TRS R consists of the following rules:

subsetA_in_gg(.(T21, T7), .(T22, T23)) → U1_gg(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
pB_in_gggg(T21, T23, T7, T22) → U4_gggg(T21, T23, T7, T22, memberC_in_gg(T21, T23))
memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))
U4_gggg(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_gggg(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
subsetA_in_gg(.(T66, T7), .(T66, T67)) → U2_gg(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
subsetA_in_gg([], T73) → subsetA_out_gg([], T73)
U2_gg(T66, T7, T67, subsetA_out_gg(T7, .(T66, T67))) → subsetA_out_gg(.(T66, T7), .(T66, T67))
U5_gggg(T21, T23, T7, T22, subsetA_out_gg(T7, .(T22, T23))) → pB_out_gggg(T21, T23, T7, T22)
U1_gg(T21, T7, T22, T23, pB_out_gggg(T21, T23, T7, T22)) → subsetA_out_gg(.(T21, T7), .(T22, T23))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → U1_GG(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
PB_IN_GGGG(T21, T23, T7, T22) → MEMBERC_IN_GG(T21, T23)
MEMBERC_IN_GG(T42, .(T43, T44)) → U3_GG(T42, T43, T44, memberC_in_gg(T42, T44))
MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_GGGG(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → U2_GG(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))

The TRS R consists of the following rules:

subsetA_in_gg(.(T21, T7), .(T22, T23)) → U1_gg(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
pB_in_gggg(T21, T23, T7, T22) → U4_gggg(T21, T23, T7, T22, memberC_in_gg(T21, T23))
memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))
U4_gggg(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_gggg(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
subsetA_in_gg(.(T66, T7), .(T66, T67)) → U2_gg(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
subsetA_in_gg([], T73) → subsetA_out_gg([], T73)
U2_gg(T66, T7, T67, subsetA_out_gg(T7, .(T66, T67))) → subsetA_out_gg(.(T66, T7), .(T66, T67))
U5_gggg(T21, T23, T7, T22, subsetA_out_gg(T7, .(T22, T23))) → pB_out_gggg(T21, T23, T7, T22)
U1_gg(T21, T7, T22, T23, pB_out_gggg(T21, T23, T7, T22)) → subsetA_out_gg(.(T21, T7), .(T22, T23))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)

The TRS R consists of the following rules:

subsetA_in_gg(.(T21, T7), .(T22, T23)) → U1_gg(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
pB_in_gggg(T21, T23, T7, T22) → U4_gggg(T21, T23, T7, T22, memberC_in_gg(T21, T23))
memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))
U4_gggg(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_gggg(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
subsetA_in_gg(.(T66, T7), .(T66, T67)) → U2_gg(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
subsetA_in_gg([], T73) → subsetA_out_gg([], T73)
U2_gg(T66, T7, T67, subsetA_out_gg(T7, .(T66, T67))) → subsetA_out_gg(.(T66, T7), .(T66, T67))
U5_gggg(T21, T23, T7, T22, subsetA_out_gg(T7, .(T22, T23))) → pB_out_gggg(T21, T23, T7, T22)
U1_gg(T21, T7, T22, T23, pB_out_gggg(T21, T23, T7, T22)) → subsetA_out_gg(.(T21, T7), .(T22, T23))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBERC_IN_GG(T42, .(T43, T44)) → MEMBERC_IN_GG(T42, T44)
    The graph contains the following edges 1 >= 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))

The TRS R consists of the following rules:

subsetA_in_gg(.(T21, T7), .(T22, T23)) → U1_gg(T21, T7, T22, T23, pB_in_gggg(T21, T23, T7, T22))
pB_in_gggg(T21, T23, T7, T22) → U4_gggg(T21, T23, T7, T22, memberC_in_gg(T21, T23))
memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))
U4_gggg(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → U5_gggg(T21, T23, T7, T22, subsetA_in_gg(T7, .(T22, T23)))
subsetA_in_gg(.(T66, T7), .(T66, T67)) → U2_gg(T66, T7, T67, subsetA_in_gg(T7, .(T66, T67)))
subsetA_in_gg([], T73) → subsetA_out_gg([], T73)
U2_gg(T66, T7, T67, subsetA_out_gg(T7, .(T66, T67))) → subsetA_out_gg(.(T66, T7), .(T66, T67))
U5_gggg(T21, T23, T7, T22, subsetA_out_gg(T7, .(T22, T23))) → pB_out_gggg(T21, T23, T7, T22)
U1_gg(T21, T7, T22, T23, pB_out_gggg(T21, T23, T7, T22)) → subsetA_out_gg(.(T21, T7), .(T22, T23))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))

The TRS R consists of the following rules:

memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))

The TRS R consists of the following rules:

memberC_in_gg(T42, .(T43, T44)) → U3_gg(T42, T43, T44, memberC_in_gg(T42, T44))
memberC_in_gg(T52, .(T52, T53)) → memberC_out_gg(T52, .(T52, T53))
U3_gg(T42, T43, T44, memberC_out_gg(T42, T44)) → memberC_out_gg(T42, .(T43, T44))

The set Q consists of the following terms:

memberC_in_gg(x0, x1)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PB_IN_GGGG(T21, T23, T7, T22) → U4_GGGG(T21, T23, T7, T22, memberC_in_gg(T21, T23))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4

  • SUBSETA_IN_GG(.(T21, T7), .(T22, T23)) → PB_IN_GGGG(T21, T23, T7, T22)
    The graph contains the following edges 1 > 1, 2 > 2, 1 > 3, 2 > 4

  • U4_GGGG(T21, T23, T7, T22, memberC_out_gg(T21, T23)) → SUBSETA_IN_GG(T7, .(T22, T23))
    The graph contains the following edges 3 >= 1

  • SUBSETA_IN_GG(.(T66, T7), .(T66, T67)) → SUBSETA_IN_GG(T7, .(T66, T67))
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES