(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Query: sublist(g,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistA_in_gg([], T15) → sublistA_out_gg([], T15)
sublistA_in_gg(T5, .(T28, T29)) → U1_gg(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
pB_in_aagagg(T37, T38, T29, X9, T5, T28) → U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
appendC_in_aag([], T44, T44) → appendC_out_aag([], T44, T44)
appendC_in_aag(.(T49, X93), X94, .(T49, T50)) → U2_aag(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
U2_aag(T49, X93, X94, T50, appendC_out_aag(X93, X94, T50)) → appendC_out_aag(.(T49, X93), X94, .(T49, T50))
U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
appendE_in_aggg([], .(T71, T72), T71, T72) → appendE_out_aggg([], .(T71, T72), T71, T72)
appendE_in_aggg(.(T82, X123), T81, T82, T83) → U4_aggg(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
appendD_in_agg([], T90, T90) → appendD_out_agg([], T90, T90)
appendD_in_agg(.(T98, X148), T97, .(T98, T99)) → U3_agg(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
U3_agg(T98, X148, T97, T99, appendD_out_agg(X148, T97, T99)) → appendD_out_agg(.(T98, X148), T97, .(T98, T99))
U4_aggg(T82, X123, T81, T83, appendD_out_agg(X123, T81, T83)) → appendE_out_aggg(.(T82, X123), T81, T82, T83)
U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_out_aggg(X9, T5, T28, T37)) → pB_out_aagagg(T37, T38, T29, X9, T5, T28)
U1_gg(T5, T28, T29, pB_out_aagagg(X56, X57, T29, X9, T5, T28)) → sublistA_out_gg(T5, .(T28, T29))

The argument filtering Pi contains the following mapping:
sublistA_in_gg(x1, x2)  =  sublistA_in_gg(x1, x2)
[]  =  []
sublistA_out_gg(x1, x2)  =  sublistA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_in_aagagg(x3, x5, x6)
U5_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagagg(x3, x5, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagagg(x1, x2, x3, x5, x6, x7)
appendE_in_aggg(x1, x2, x3, x4)  =  appendE_in_aggg(x2, x3, x4)
appendE_out_aggg(x1, x2, x3, x4)  =  appendE_out_aggg(x1, x2, x3, x4)
U4_aggg(x1, x2, x3, x4, x5)  =  U4_aggg(x1, x3, x4, x5)
appendD_in_agg(x1, x2, x3)  =  appendD_in_agg(x2, x3)
appendD_out_agg(x1, x2, x3)  =  appendD_out_agg(x1, x2, x3)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x1, x3, x4, x5)
pB_out_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_out_aagagg(x1, x2, x3, x4, x5, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLISTA_IN_GG(T5, .(T28, T29)) → U1_GG(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
SUBLISTA_IN_GG(T5, .(T28, T29)) → PB_IN_AAGAGG(X56, X57, T29, X9, T5, T28)
PB_IN_AAGAGG(T37, T38, T29, X9, T5, T28) → U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
PB_IN_AAGAGG(T37, T38, T29, X9, T5, T28) → APPENDC_IN_AAG(T37, T38, T29)
APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → U2_AAG(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDC_IN_AAG(X93, X94, T50)
U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_AAGAGG(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → APPENDE_IN_AGGG(X9, T5, T28, T37)
APPENDE_IN_AGGG(.(T82, X123), T81, T82, T83) → U4_AGGG(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
APPENDE_IN_AGGG(.(T82, X123), T81, T82, T83) → APPENDD_IN_AGG(X123, T81, T83)
APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → U3_AGG(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDD_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistA_in_gg([], T15) → sublistA_out_gg([], T15)
sublistA_in_gg(T5, .(T28, T29)) → U1_gg(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
pB_in_aagagg(T37, T38, T29, X9, T5, T28) → U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
appendC_in_aag([], T44, T44) → appendC_out_aag([], T44, T44)
appendC_in_aag(.(T49, X93), X94, .(T49, T50)) → U2_aag(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
U2_aag(T49, X93, X94, T50, appendC_out_aag(X93, X94, T50)) → appendC_out_aag(.(T49, X93), X94, .(T49, T50))
U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
appendE_in_aggg([], .(T71, T72), T71, T72) → appendE_out_aggg([], .(T71, T72), T71, T72)
appendE_in_aggg(.(T82, X123), T81, T82, T83) → U4_aggg(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
appendD_in_agg([], T90, T90) → appendD_out_agg([], T90, T90)
appendD_in_agg(.(T98, X148), T97, .(T98, T99)) → U3_agg(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
U3_agg(T98, X148, T97, T99, appendD_out_agg(X148, T97, T99)) → appendD_out_agg(.(T98, X148), T97, .(T98, T99))
U4_aggg(T82, X123, T81, T83, appendD_out_agg(X123, T81, T83)) → appendE_out_aggg(.(T82, X123), T81, T82, T83)
U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_out_aggg(X9, T5, T28, T37)) → pB_out_aagagg(T37, T38, T29, X9, T5, T28)
U1_gg(T5, T28, T29, pB_out_aagagg(X56, X57, T29, X9, T5, T28)) → sublistA_out_gg(T5, .(T28, T29))

The argument filtering Pi contains the following mapping:
sublistA_in_gg(x1, x2)  =  sublistA_in_gg(x1, x2)
[]  =  []
sublistA_out_gg(x1, x2)  =  sublistA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_in_aagagg(x3, x5, x6)
U5_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagagg(x3, x5, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagagg(x1, x2, x3, x5, x6, x7)
appendE_in_aggg(x1, x2, x3, x4)  =  appendE_in_aggg(x2, x3, x4)
appendE_out_aggg(x1, x2, x3, x4)  =  appendE_out_aggg(x1, x2, x3, x4)
U4_aggg(x1, x2, x3, x4, x5)  =  U4_aggg(x1, x3, x4, x5)
appendD_in_agg(x1, x2, x3)  =  appendD_in_agg(x2, x3)
appendD_out_agg(x1, x2, x3)  =  appendD_out_agg(x1, x2, x3)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x1, x3, x4, x5)
pB_out_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_out_aagagg(x1, x2, x3, x4, x5, x6)
SUBLISTA_IN_GG(x1, x2)  =  SUBLISTA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x1, x2, x3, x4)
PB_IN_AAGAGG(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAGAGG(x3, x5, x6)
U5_AAGAGG(x1, x2, x3, x4, x5, x6, x7)  =  U5_AAGAGG(x3, x5, x6, x7)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x4, x5)
U6_AAGAGG(x1, x2, x3, x4, x5, x6, x7)  =  U6_AAGAGG(x1, x2, x3, x5, x6, x7)
APPENDE_IN_AGGG(x1, x2, x3, x4)  =  APPENDE_IN_AGGG(x2, x3, x4)
U4_AGGG(x1, x2, x3, x4, x5)  =  U4_AGGG(x1, x3, x4, x5)
APPENDD_IN_AGG(x1, x2, x3)  =  APPENDD_IN_AGG(x2, x3)
U3_AGG(x1, x2, x3, x4, x5)  =  U3_AGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBLISTA_IN_GG(T5, .(T28, T29)) → U1_GG(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
SUBLISTA_IN_GG(T5, .(T28, T29)) → PB_IN_AAGAGG(X56, X57, T29, X9, T5, T28)
PB_IN_AAGAGG(T37, T38, T29, X9, T5, T28) → U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
PB_IN_AAGAGG(T37, T38, T29, X9, T5, T28) → APPENDC_IN_AAG(T37, T38, T29)
APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → U2_AAG(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDC_IN_AAG(X93, X94, T50)
U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_AAGAGG(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
U5_AAGAGG(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → APPENDE_IN_AGGG(X9, T5, T28, T37)
APPENDE_IN_AGGG(.(T82, X123), T81, T82, T83) → U4_AGGG(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
APPENDE_IN_AGGG(.(T82, X123), T81, T82, T83) → APPENDD_IN_AGG(X123, T81, T83)
APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → U3_AGG(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDD_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistA_in_gg([], T15) → sublistA_out_gg([], T15)
sublistA_in_gg(T5, .(T28, T29)) → U1_gg(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
pB_in_aagagg(T37, T38, T29, X9, T5, T28) → U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
appendC_in_aag([], T44, T44) → appendC_out_aag([], T44, T44)
appendC_in_aag(.(T49, X93), X94, .(T49, T50)) → U2_aag(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
U2_aag(T49, X93, X94, T50, appendC_out_aag(X93, X94, T50)) → appendC_out_aag(.(T49, X93), X94, .(T49, T50))
U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
appendE_in_aggg([], .(T71, T72), T71, T72) → appendE_out_aggg([], .(T71, T72), T71, T72)
appendE_in_aggg(.(T82, X123), T81, T82, T83) → U4_aggg(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
appendD_in_agg([], T90, T90) → appendD_out_agg([], T90, T90)
appendD_in_agg(.(T98, X148), T97, .(T98, T99)) → U3_agg(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
U3_agg(T98, X148, T97, T99, appendD_out_agg(X148, T97, T99)) → appendD_out_agg(.(T98, X148), T97, .(T98, T99))
U4_aggg(T82, X123, T81, T83, appendD_out_agg(X123, T81, T83)) → appendE_out_aggg(.(T82, X123), T81, T82, T83)
U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_out_aggg(X9, T5, T28, T37)) → pB_out_aagagg(T37, T38, T29, X9, T5, T28)
U1_gg(T5, T28, T29, pB_out_aagagg(X56, X57, T29, X9, T5, T28)) → sublistA_out_gg(T5, .(T28, T29))

The argument filtering Pi contains the following mapping:
sublistA_in_gg(x1, x2)  =  sublistA_in_gg(x1, x2)
[]  =  []
sublistA_out_gg(x1, x2)  =  sublistA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_in_aagagg(x3, x5, x6)
U5_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagagg(x3, x5, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagagg(x1, x2, x3, x5, x6, x7)
appendE_in_aggg(x1, x2, x3, x4)  =  appendE_in_aggg(x2, x3, x4)
appendE_out_aggg(x1, x2, x3, x4)  =  appendE_out_aggg(x1, x2, x3, x4)
U4_aggg(x1, x2, x3, x4, x5)  =  U4_aggg(x1, x3, x4, x5)
appendD_in_agg(x1, x2, x3)  =  appendD_in_agg(x2, x3)
appendD_out_agg(x1, x2, x3)  =  appendD_out_agg(x1, x2, x3)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x1, x3, x4, x5)
pB_out_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_out_aagagg(x1, x2, x3, x4, x5, x6)
SUBLISTA_IN_GG(x1, x2)  =  SUBLISTA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x1, x2, x3, x4)
PB_IN_AAGAGG(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAGAGG(x3, x5, x6)
U5_AAGAGG(x1, x2, x3, x4, x5, x6, x7)  =  U5_AAGAGG(x3, x5, x6, x7)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x4, x5)
U6_AAGAGG(x1, x2, x3, x4, x5, x6, x7)  =  U6_AAGAGG(x1, x2, x3, x5, x6, x7)
APPENDE_IN_AGGG(x1, x2, x3, x4)  =  APPENDE_IN_AGGG(x2, x3, x4)
U4_AGGG(x1, x2, x3, x4, x5)  =  U4_AGGG(x1, x3, x4, x5)
APPENDD_IN_AGG(x1, x2, x3)  =  APPENDD_IN_AGG(x2, x3)
U3_AGG(x1, x2, x3, x4, x5)  =  U3_AGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDD_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistA_in_gg([], T15) → sublistA_out_gg([], T15)
sublistA_in_gg(T5, .(T28, T29)) → U1_gg(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
pB_in_aagagg(T37, T38, T29, X9, T5, T28) → U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
appendC_in_aag([], T44, T44) → appendC_out_aag([], T44, T44)
appendC_in_aag(.(T49, X93), X94, .(T49, T50)) → U2_aag(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
U2_aag(T49, X93, X94, T50, appendC_out_aag(X93, X94, T50)) → appendC_out_aag(.(T49, X93), X94, .(T49, T50))
U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
appendE_in_aggg([], .(T71, T72), T71, T72) → appendE_out_aggg([], .(T71, T72), T71, T72)
appendE_in_aggg(.(T82, X123), T81, T82, T83) → U4_aggg(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
appendD_in_agg([], T90, T90) → appendD_out_agg([], T90, T90)
appendD_in_agg(.(T98, X148), T97, .(T98, T99)) → U3_agg(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
U3_agg(T98, X148, T97, T99, appendD_out_agg(X148, T97, T99)) → appendD_out_agg(.(T98, X148), T97, .(T98, T99))
U4_aggg(T82, X123, T81, T83, appendD_out_agg(X123, T81, T83)) → appendE_out_aggg(.(T82, X123), T81, T82, T83)
U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_out_aggg(X9, T5, T28, T37)) → pB_out_aagagg(T37, T38, T29, X9, T5, T28)
U1_gg(T5, T28, T29, pB_out_aagagg(X56, X57, T29, X9, T5, T28)) → sublistA_out_gg(T5, .(T28, T29))

The argument filtering Pi contains the following mapping:
sublistA_in_gg(x1, x2)  =  sublistA_in_gg(x1, x2)
[]  =  []
sublistA_out_gg(x1, x2)  =  sublistA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_in_aagagg(x3, x5, x6)
U5_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagagg(x3, x5, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagagg(x1, x2, x3, x5, x6, x7)
appendE_in_aggg(x1, x2, x3, x4)  =  appendE_in_aggg(x2, x3, x4)
appendE_out_aggg(x1, x2, x3, x4)  =  appendE_out_aggg(x1, x2, x3, x4)
U4_aggg(x1, x2, x3, x4, x5)  =  U4_aggg(x1, x3, x4, x5)
appendD_in_agg(x1, x2, x3)  =  appendD_in_agg(x2, x3)
appendD_out_agg(x1, x2, x3)  =  appendD_out_agg(x1, x2, x3)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x1, x3, x4, x5)
pB_out_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_out_aagagg(x1, x2, x3, x4, x5, x6)
APPENDD_IN_AGG(x1, x2, x3)  =  APPENDD_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDD_IN_AGG(X148, T97, T99)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDD_IN_AGG(x1, x2, x3)  =  APPENDD_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AGG(T97, .(T98, T99)) → APPENDD_IN_AGG(T97, T99)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDD_IN_AGG(T97, .(T98, T99)) → APPENDD_IN_AGG(T97, T99)
    The graph contains the following edges 1 >= 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDC_IN_AAG(X93, X94, T50)

The TRS R consists of the following rules:

sublistA_in_gg([], T15) → sublistA_out_gg([], T15)
sublistA_in_gg(T5, .(T28, T29)) → U1_gg(T5, T28, T29, pB_in_aagagg(X56, X57, T29, X9, T5, T28))
pB_in_aagagg(T37, T38, T29, X9, T5, T28) → U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_in_aag(T37, T38, T29))
appendC_in_aag([], T44, T44) → appendC_out_aag([], T44, T44)
appendC_in_aag(.(T49, X93), X94, .(T49, T50)) → U2_aag(T49, X93, X94, T50, appendC_in_aag(X93, X94, T50))
U2_aag(T49, X93, X94, T50, appendC_out_aag(X93, X94, T50)) → appendC_out_aag(.(T49, X93), X94, .(T49, T50))
U5_aagagg(T37, T38, T29, X9, T5, T28, appendC_out_aag(T37, T38, T29)) → U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_in_aggg(X9, T5, T28, T37))
appendE_in_aggg([], .(T71, T72), T71, T72) → appendE_out_aggg([], .(T71, T72), T71, T72)
appendE_in_aggg(.(T82, X123), T81, T82, T83) → U4_aggg(T82, X123, T81, T83, appendD_in_agg(X123, T81, T83))
appendD_in_agg([], T90, T90) → appendD_out_agg([], T90, T90)
appendD_in_agg(.(T98, X148), T97, .(T98, T99)) → U3_agg(T98, X148, T97, T99, appendD_in_agg(X148, T97, T99))
U3_agg(T98, X148, T97, T99, appendD_out_agg(X148, T97, T99)) → appendD_out_agg(.(T98, X148), T97, .(T98, T99))
U4_aggg(T82, X123, T81, T83, appendD_out_agg(X123, T81, T83)) → appendE_out_aggg(.(T82, X123), T81, T82, T83)
U6_aagagg(T37, T38, T29, X9, T5, T28, appendE_out_aggg(X9, T5, T28, T37)) → pB_out_aagagg(T37, T38, T29, X9, T5, T28)
U1_gg(T5, T28, T29, pB_out_aagagg(X56, X57, T29, X9, T5, T28)) → sublistA_out_gg(T5, .(T28, T29))

The argument filtering Pi contains the following mapping:
sublistA_in_gg(x1, x2)  =  sublistA_in_gg(x1, x2)
[]  =  []
sublistA_out_gg(x1, x2)  =  sublistA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_in_aagagg(x3, x5, x6)
U5_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagagg(x3, x5, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagagg(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagagg(x1, x2, x3, x5, x6, x7)
appendE_in_aggg(x1, x2, x3, x4)  =  appendE_in_aggg(x2, x3, x4)
appendE_out_aggg(x1, x2, x3, x4)  =  appendE_out_aggg(x1, x2, x3, x4)
U4_aggg(x1, x2, x3, x4, x5)  =  U4_aggg(x1, x3, x4, x5)
appendD_in_agg(x1, x2, x3)  =  appendD_in_agg(x2, x3)
appendD_out_agg(x1, x2, x3)  =  appendD_out_agg(x1, x2, x3)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x1, x3, x4, x5)
pB_out_aagagg(x1, x2, x3, x4, x5, x6)  =  pB_out_aagagg(x1, x2, x3, x4, x5, x6)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDC_IN_AAG(X93, X94, T50)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T49, T50)) → APPENDC_IN_AAG(T50)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDC_IN_AAG(.(T49, T50)) → APPENDC_IN_AAG(T50)
    The graph contains the following edges 1 > 1

(20) YES