(0) Obligation:

Clauses:

rem(X, Y, R) :- ','(notZero(Y), ','(sub(X, Y, Z), rem(Z, Y, R))).
rem(X, Y, X) :- ','(notZero(Y), geq(X, Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
notZero(s(X)).
geq(s(X), s(Y)) :- geq(X, Y).
geq(X, 0).

Query: rem(g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15), T10) → U1_GGA(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
REMA_IN_GGA(T7, s(T15), T10) → PB_IN_GGAA(T7, T15, X7, T10)
PB_IN_GGAA(T7, T15, T18, T10) → U6_GGAA(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
PB_IN_GGAA(T7, T15, T18, T10) → SUBE_IN_GGA(T7, T15, T18)
SUBE_IN_GGA(s(T29), T30, X40) → U5_GGA(T29, T30, X40, subD_in_gga(T29, T30, X40))
SUBE_IN_GGA(s(T29), T30, X40) → SUBD_IN_GGA(T29, T30, X40)
SUBD_IN_GGA(s(T41), s(T42), X64) → U3_GGA(T41, T42, X64, subD_in_gga(T41, T42, X64))
SUBD_IN_GGA(s(T41), s(T42), X64) → SUBD_IN_GGA(T41, T42, X64)
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_GGAA(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15), T10)
REMA_IN_GGA(s(T73), s(T74), s(T73)) → U2_GGA(T73, T74, geqC_in_gg(T73, T74))
REMA_IN_GGA(s(T73), s(T74), s(T73)) → GEQC_IN_GG(T73, T74)
GEQC_IN_GG(s(T85), s(T86)) → U4_GG(T85, T86, geqC_in_gg(T85, T86))
GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)

The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
REMA_IN_GGA(x1, x2, x3)  =  REMA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
SUBD_IN_GGA(x1, x2, x3)  =  SUBD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x3, x5)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x2, x3)
GEQC_IN_GG(x1, x2)  =  GEQC_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15), T10) → U1_GGA(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
REMA_IN_GGA(T7, s(T15), T10) → PB_IN_GGAA(T7, T15, X7, T10)
PB_IN_GGAA(T7, T15, T18, T10) → U6_GGAA(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
PB_IN_GGAA(T7, T15, T18, T10) → SUBE_IN_GGA(T7, T15, T18)
SUBE_IN_GGA(s(T29), T30, X40) → U5_GGA(T29, T30, X40, subD_in_gga(T29, T30, X40))
SUBE_IN_GGA(s(T29), T30, X40) → SUBD_IN_GGA(T29, T30, X40)
SUBD_IN_GGA(s(T41), s(T42), X64) → U3_GGA(T41, T42, X64, subD_in_gga(T41, T42, X64))
SUBD_IN_GGA(s(T41), s(T42), X64) → SUBD_IN_GGA(T41, T42, X64)
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_GGAA(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15), T10)
REMA_IN_GGA(s(T73), s(T74), s(T73)) → U2_GGA(T73, T74, geqC_in_gg(T73, T74))
REMA_IN_GGA(s(T73), s(T74), s(T73)) → GEQC_IN_GG(T73, T74)
GEQC_IN_GG(s(T85), s(T86)) → U4_GG(T85, T86, geqC_in_gg(T85, T86))
GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)

The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
REMA_IN_GGA(x1, x2, x3)  =  REMA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
SUBD_IN_GGA(x1, x2, x3)  =  SUBD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x3, x5)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x2, x3)
GEQC_IN_GG(x1, x2)  =  GEQC_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)

The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
GEQC_IN_GG(x1, x2)  =  GEQC_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GEQC_IN_GG(s(T85), s(T86)) → GEQC_IN_GG(T85, T86)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBD_IN_GGA(s(T41), s(T42), X64) → SUBD_IN_GGA(T41, T42, X64)

The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
SUBD_IN_GGA(x1, x2, x3)  =  SUBD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBD_IN_GGA(s(T41), s(T42), X64) → SUBD_IN_GGA(T41, T42, X64)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBD_IN_GGA(x1, x2, x3)  =  SUBD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBD_IN_GGA(s(T41), s(T42)) → SUBD_IN_GGA(T41, T42)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBD_IN_GGA(s(T41), s(T42)) → SUBD_IN_GGA(T41, T42)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15), T10) → PB_IN_GGAA(T7, T15, X7, T10)
PB_IN_GGAA(T7, T15, T18, T10) → U6_GGAA(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15), T10)

The TRS R consists of the following rules:

remA_in_gga(T7, s(T15), T10) → U1_gga(T7, T15, T10, pB_in_ggaa(T7, T15, X7, T10))
pB_in_ggaa(T7, T15, T18, T10) → U6_ggaa(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U6_ggaa(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → U7_ggaa(T7, T15, T18, T10, remA_in_gga(T18, s(T15), T10))
remA_in_gga(s(T73), s(T74), s(T73)) → U2_gga(T73, T74, geqC_in_gg(T73, T74))
geqC_in_gg(s(T85), s(T86)) → U4_gg(T85, T86, geqC_in_gg(T85, T86))
geqC_in_gg(T91, 0) → geqC_out_gg(T91, 0)
U4_gg(T85, T86, geqC_out_gg(T85, T86)) → geqC_out_gg(s(T85), s(T86))
U2_gga(T73, T74, geqC_out_gg(T73, T74)) → remA_out_gga(s(T73), s(T74), s(T73))
U7_ggaa(T7, T15, T18, T10, remA_out_gga(T18, s(T15), T10)) → pB_out_ggaa(T7, T15, T18, T10)
U1_gga(T7, T15, T10, pB_out_ggaa(T7, T15, X7, T10)) → remA_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remA_in_gga(x1, x2, x3)  =  remA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x2, x3)
geqC_in_gg(x1, x2)  =  geqC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x1, x2, x3)
geqC_out_gg(x1, x2)  =  geqC_out_gg(x1, x2)
remA_out_gga(x1, x2, x3)  =  remA_out_gga(x1, x2, x3)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
REMA_IN_GGA(x1, x2, x3)  =  REMA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15), T10) → PB_IN_GGAA(T7, T15, X7, T10)
PB_IN_GGAA(T7, T15, T18, T10) → U6_GGAA(T7, T15, T18, T10, subE_in_gga(T7, T15, T18))
U6_GGAA(T7, T15, T18, T10, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15), T10)

The TRS R consists of the following rules:

subE_in_gga(s(T29), T30, X40) → U5_gga(T29, T30, X40, subD_in_gga(T29, T30, X40))
U5_gga(T29, T30, X40, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
subD_in_gga(s(T41), s(T42), X64) → U3_gga(T41, T42, X64, subD_in_gga(T41, T42, X64))
subD_in_gga(T47, 0, T47) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, X64, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subD_in_gga(x1, x2, x3)  =  subD_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
0  =  0
subD_out_gga(x1, x2, x3)  =  subD_out_gga(x1, x2, x3)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
REMA_IN_GGA(x1, x2, x3)  =  REMA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15)) → PB_IN_GGAA(T7, T15)
PB_IN_GGAA(T7, T15) → U6_GGAA(T7, T15, subE_in_gga(T7, T15))
U6_GGAA(T7, T15, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15))

The TRS R consists of the following rules:

subE_in_gga(s(T29), T30) → U5_gga(T29, T30, subD_in_gga(T29, T30))
U5_gga(T29, T30, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
subD_in_gga(s(T41), s(T42)) → U3_gga(T41, T42, subD_in_gga(T41, T42))
subD_in_gga(T47, 0) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)

The set Q consists of the following terms:

subE_in_gga(x0, x1)
U5_gga(x0, x1, x2)
subD_in_gga(x0, x1)
U3_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U6_GGAA(T7, T15, subE_out_gga(T7, T15, T18)) → REMA_IN_GGA(T18, s(T15))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(PB_IN_GGAA(x1, x2)) = x1   
POL(REMA_IN_GGA(x1, x2)) = x1   
POL(U3_gga(x1, x2, x3)) = x3   
POL(U5_gga(x1, x2, x3)) = 1 + x3   
POL(U6_GGAA(x1, x2, x3)) = x3   
POL(s(x1)) = 1 + x1   
POL(subD_in_gga(x1, x2)) = x1   
POL(subD_out_gga(x1, x2, x3)) = x3   
POL(subE_in_gga(x1, x2)) = x1   
POL(subE_out_gga(x1, x2, x3)) = 1 + x3   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

subE_in_gga(s(T29), T30) → U5_gga(T29, T30, subD_in_gga(T29, T30))
subD_in_gga(s(T41), s(T42)) → U3_gga(T41, T42, subD_in_gga(T41, T42))
subD_in_gga(T47, 0) → subD_out_gga(T47, 0, T47)
U5_gga(T29, T30, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
U3_gga(T41, T42, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REMA_IN_GGA(T7, s(T15)) → PB_IN_GGAA(T7, T15)
PB_IN_GGAA(T7, T15) → U6_GGAA(T7, T15, subE_in_gga(T7, T15))

The TRS R consists of the following rules:

subE_in_gga(s(T29), T30) → U5_gga(T29, T30, subD_in_gga(T29, T30))
U5_gga(T29, T30, subD_out_gga(T29, T30, X40)) → subE_out_gga(s(T29), T30, X40)
subD_in_gga(s(T41), s(T42)) → U3_gga(T41, T42, subD_in_gga(T41, T42))
subD_in_gga(T47, 0) → subD_out_gga(T47, 0, T47)
U3_gga(T41, T42, subD_out_gga(T41, T42, X64)) → subD_out_gga(s(T41), s(T42), X64)

The set Q consists of the following terms:

subE_in_gga(x0, x1)
U5_gga(x0, x1, x2)
subD_in_gga(x0, x1)
U3_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(29) TRUE