(0) Obligation:

Clauses:

rem(X, Y, R) :- ','(notZero(Y), ','(sub(X, Y, Z), rem(Z, Y, R))).
rem(X, Y, X) :- ','(notZero(Y), geq(X, Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
notZero(s(X)).
geq(s(X), s(Y)) :- geq(X, Y).
geq(X, 0).

Query: rem(g,a,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GAG(T7, s(T16), T9) → U1_GAG(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
REMA_IN_GAG(T7, s(T16), T9) → PB_IN_GAAG(T7, T16, X7, T9)
PB_IN_GAAG(T7, T20, T19, T9) → U11_GAAG(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
PB_IN_GAAG(T7, T20, T19, T9) → SUBI_IN_GAA(T7, T20, T19)
SUBI_IN_GAA(s(T31), T33, X40) → U9_GAA(T31, T33, X40, subD_in_gaa(T31, T33, X40))
SUBI_IN_GAA(s(T31), T33, X40) → SUBD_IN_GAA(T31, T33, X40)
SUBD_IN_GAA(s(T44), s(T46), X64) → U3_GAA(T44, T46, X64, subD_in_gaa(T44, T46, X64))
SUBD_IN_GAA(s(T44), s(T46), X64) → SUBD_IN_GAA(T44, T46, X64)
U11_GAAG(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_GAAG(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
U11_GAAG(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → REME_IN_GGG(T19, T20, T9)
REME_IN_GGG(T72, T81, T74) → U4_GGG(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, X102, T74)
PF_IN_GGAG(T72, T81, T84, T74) → U13_GGAG(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
PF_IN_GGAG(T72, T81, T84, T74) → SUBJ_IN_GGA(T72, T81, T84)
SUBJ_IN_GGA(s(T95), T96, X141) → U10_GGA(T95, T96, X141, subH_in_gga(T95, T96, X141))
SUBJ_IN_GGA(s(T95), T96, X141) → SUBH_IN_GGA(T95, T96, X141)
SUBH_IN_GGA(s(T107), s(T108), X165) → U6_GGA(T107, T108, X165, subH_in_gga(T107, T108, X165))
SUBH_IN_GGA(s(T107), s(T108), X165) → SUBH_IN_GGA(T107, T108, X165)
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_GGAG(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)
REME_IN_GGG(s(T141), T142, s(T141)) → U5_GGG(T141, T142, geqG_in_gg(T141, T142))
REME_IN_GGG(s(T141), T142, s(T141)) → GEQG_IN_GG(T141, T142)
GEQG_IN_GG(s(T153), s(T154)) → U7_GG(T153, T154, geqG_in_gg(T153, T154))
GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)
REMA_IN_GAG(s(T184), s(T186), s(T184)) → U2_GAG(T184, T186, geqC_in_ga(T184, T186))
REMA_IN_GAG(s(T184), s(T186), s(T184)) → GEQC_IN_GA(T184, T186)
GEQC_IN_GA(s(T197), s(T199)) → U8_GA(T197, T199, geqC_in_ga(T197, T199))
GEQC_IN_GA(s(T197), s(T199)) → GEQC_IN_GA(T197, T199)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
REMA_IN_GAG(x1, x2, x3)  =  REMA_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4)  =  U1_GAG(x1, x3, x4)
PB_IN_GAAG(x1, x2, x3, x4)  =  PB_IN_GAAG(x1, x4)
U11_GAAG(x1, x2, x3, x4, x5)  =  U11_GAAG(x1, x4, x5)
SUBI_IN_GAA(x1, x2, x3)  =  SUBI_IN_GAA(x1)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
SUBD_IN_GAA(x1, x2, x3)  =  SUBD_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x1, x4)
U12_GAAG(x1, x2, x3, x4, x5)  =  U12_GAAG(x1, x2, x3, x4, x5)
REME_IN_GGG(x1, x2, x3)  =  REME_IN_GGG(x1, x2, x3)
U4_GGG(x1, x2, x3, x4)  =  U4_GGG(x1, x2, x3, x4)
PF_IN_GGAG(x1, x2, x3, x4)  =  PF_IN_GGAG(x1, x2, x4)
U13_GGAG(x1, x2, x3, x4, x5)  =  U13_GGAG(x1, x2, x4, x5)
SUBJ_IN_GGA(x1, x2, x3)  =  SUBJ_IN_GGA(x1, x2)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x1, x2, x4)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U14_GGAG(x1, x2, x3, x4, x5)  =  U14_GGAG(x1, x2, x3, x4, x5)
U5_GGG(x1, x2, x3)  =  U5_GGG(x1, x2, x3)
GEQG_IN_GG(x1, x2)  =  GEQG_IN_GG(x1, x2)
U7_GG(x1, x2, x3)  =  U7_GG(x1, x2, x3)
U2_GAG(x1, x2, x3)  =  U2_GAG(x1, x3)
GEQC_IN_GA(x1, x2)  =  GEQC_IN_GA(x1)
U8_GA(x1, x2, x3)  =  U8_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMA_IN_GAG(T7, s(T16), T9) → U1_GAG(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
REMA_IN_GAG(T7, s(T16), T9) → PB_IN_GAAG(T7, T16, X7, T9)
PB_IN_GAAG(T7, T20, T19, T9) → U11_GAAG(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
PB_IN_GAAG(T7, T20, T19, T9) → SUBI_IN_GAA(T7, T20, T19)
SUBI_IN_GAA(s(T31), T33, X40) → U9_GAA(T31, T33, X40, subD_in_gaa(T31, T33, X40))
SUBI_IN_GAA(s(T31), T33, X40) → SUBD_IN_GAA(T31, T33, X40)
SUBD_IN_GAA(s(T44), s(T46), X64) → U3_GAA(T44, T46, X64, subD_in_gaa(T44, T46, X64))
SUBD_IN_GAA(s(T44), s(T46), X64) → SUBD_IN_GAA(T44, T46, X64)
U11_GAAG(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_GAAG(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
U11_GAAG(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → REME_IN_GGG(T19, T20, T9)
REME_IN_GGG(T72, T81, T74) → U4_GGG(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, X102, T74)
PF_IN_GGAG(T72, T81, T84, T74) → U13_GGAG(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
PF_IN_GGAG(T72, T81, T84, T74) → SUBJ_IN_GGA(T72, T81, T84)
SUBJ_IN_GGA(s(T95), T96, X141) → U10_GGA(T95, T96, X141, subH_in_gga(T95, T96, X141))
SUBJ_IN_GGA(s(T95), T96, X141) → SUBH_IN_GGA(T95, T96, X141)
SUBH_IN_GGA(s(T107), s(T108), X165) → U6_GGA(T107, T108, X165, subH_in_gga(T107, T108, X165))
SUBH_IN_GGA(s(T107), s(T108), X165) → SUBH_IN_GGA(T107, T108, X165)
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_GGAG(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)
REME_IN_GGG(s(T141), T142, s(T141)) → U5_GGG(T141, T142, geqG_in_gg(T141, T142))
REME_IN_GGG(s(T141), T142, s(T141)) → GEQG_IN_GG(T141, T142)
GEQG_IN_GG(s(T153), s(T154)) → U7_GG(T153, T154, geqG_in_gg(T153, T154))
GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)
REMA_IN_GAG(s(T184), s(T186), s(T184)) → U2_GAG(T184, T186, geqC_in_ga(T184, T186))
REMA_IN_GAG(s(T184), s(T186), s(T184)) → GEQC_IN_GA(T184, T186)
GEQC_IN_GA(s(T197), s(T199)) → U8_GA(T197, T199, geqC_in_ga(T197, T199))
GEQC_IN_GA(s(T197), s(T199)) → GEQC_IN_GA(T197, T199)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
REMA_IN_GAG(x1, x2, x3)  =  REMA_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4)  =  U1_GAG(x1, x3, x4)
PB_IN_GAAG(x1, x2, x3, x4)  =  PB_IN_GAAG(x1, x4)
U11_GAAG(x1, x2, x3, x4, x5)  =  U11_GAAG(x1, x4, x5)
SUBI_IN_GAA(x1, x2, x3)  =  SUBI_IN_GAA(x1)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
SUBD_IN_GAA(x1, x2, x3)  =  SUBD_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x1, x4)
U12_GAAG(x1, x2, x3, x4, x5)  =  U12_GAAG(x1, x2, x3, x4, x5)
REME_IN_GGG(x1, x2, x3)  =  REME_IN_GGG(x1, x2, x3)
U4_GGG(x1, x2, x3, x4)  =  U4_GGG(x1, x2, x3, x4)
PF_IN_GGAG(x1, x2, x3, x4)  =  PF_IN_GGAG(x1, x2, x4)
U13_GGAG(x1, x2, x3, x4, x5)  =  U13_GGAG(x1, x2, x4, x5)
SUBJ_IN_GGA(x1, x2, x3)  =  SUBJ_IN_GGA(x1, x2)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x1, x2, x4)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U14_GGAG(x1, x2, x3, x4, x5)  =  U14_GGAG(x1, x2, x3, x4, x5)
U5_GGG(x1, x2, x3)  =  U5_GGG(x1, x2, x3)
GEQG_IN_GG(x1, x2)  =  GEQG_IN_GG(x1, x2)
U7_GG(x1, x2, x3)  =  U7_GG(x1, x2, x3)
U2_GAG(x1, x2, x3)  =  U2_GAG(x1, x3)
GEQC_IN_GA(x1, x2)  =  GEQC_IN_GA(x1)
U8_GA(x1, x2, x3)  =  U8_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 21 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQC_IN_GA(s(T197), s(T199)) → GEQC_IN_GA(T197, T199)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
GEQC_IN_GA(x1, x2)  =  GEQC_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQC_IN_GA(s(T197), s(T199)) → GEQC_IN_GA(T197, T199)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
GEQC_IN_GA(x1, x2)  =  GEQC_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GEQC_IN_GA(s(T197)) → GEQC_IN_GA(T197)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GEQC_IN_GA(s(T197)) → GEQC_IN_GA(T197)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
GEQG_IN_GG(x1, x2)  =  GEQG_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GEQG_IN_GG(s(T153), s(T154)) → GEQG_IN_GG(T153, T154)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T107), s(T108), X165) → SUBH_IN_GGA(T107, T108, X165)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T107), s(T108), X165) → SUBH_IN_GGA(T107, T108, X165)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T107), s(T108)) → SUBH_IN_GGA(T107, T108)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBH_IN_GGA(s(T107), s(T108)) → SUBH_IN_GGA(T107, T108)
    The graph contains the following edges 1 > 1, 2 > 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, X102, T74)
PF_IN_GGAG(T72, T81, T84, T74) → U13_GGAG(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
REME_IN_GGG(x1, x2, x3)  =  REME_IN_GGG(x1, x2, x3)
PF_IN_GGAG(x1, x2, x3, x4)  =  PF_IN_GGAG(x1, x2, x4)
U13_GGAG(x1, x2, x3, x4, x5)  =  U13_GGAG(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, X102, T74)
PF_IN_GGAG(T72, T81, T84, T74) → U13_GGAG(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
U13_GGAG(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)

The TRS R consists of the following rules:

subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
REME_IN_GGG(x1, x2, x3)  =  REME_IN_GGG(x1, x2, x3)
PF_IN_GGAG(x1, x2, x3, x4)  =  PF_IN_GGAG(x1, x2, x4)
U13_GGAG(x1, x2, x3, x4, x5)  =  U13_GGAG(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, T74)
PF_IN_GGAG(T72, T81, T74) → U13_GGAG(T72, T81, T74, subJ_in_gga(T72, T81))
U13_GGAG(T72, T81, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)

The TRS R consists of the following rules:

subJ_in_gga(s(T95), T96) → U10_gga(T95, T96, subH_in_gga(T95, T96))
U10_gga(T95, T96, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
subH_in_gga(s(T107), s(T108)) → U6_gga(T107, T108, subH_in_gga(T107, T108))
subH_in_gga(T113, 0) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)

The set Q consists of the following terms:

subJ_in_gga(x0, x1)
U10_gga(x0, x1, x2)
subH_in_gga(x0, x1)
U6_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PF_IN_GGAG(T72, T81, T74) → U13_GGAG(T72, T81, T74, subJ_in_gga(T72, T81))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(PF_IN_GGAG(x1, x2, x3)) = 1 + x1   
POL(REME_IN_GGG(x1, x2, x3)) = 1 + x1   
POL(U10_gga(x1, x2, x3)) = 1 + x3   
POL(U13_GGAG(x1, x2, x3, x4)) = x4   
POL(U6_gga(x1, x2, x3)) = 1 + x3   
POL(s(x1)) = 1 + x1   
POL(subH_in_gga(x1, x2)) = x1   
POL(subH_out_gga(x1, x2, x3)) = x3   
POL(subJ_in_gga(x1, x2)) = x1   
POL(subJ_out_gga(x1, x2, x3)) = 1 + x3   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

subJ_in_gga(s(T95), T96) → U10_gga(T95, T96, subH_in_gga(T95, T96))
subH_in_gga(s(T107), s(T108)) → U6_gga(T107, T108, subH_in_gga(T107, T108))
subH_in_gga(T113, 0) → subH_out_gga(T113, 0, T113)
U10_gga(T95, T96, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U6_gga(T107, T108, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REME_IN_GGG(T72, T81, T74) → PF_IN_GGAG(T72, T81, T74)
U13_GGAG(T72, T81, T74, subJ_out_gga(T72, T81, T84)) → REME_IN_GGG(T84, T81, T74)

The TRS R consists of the following rules:

subJ_in_gga(s(T95), T96) → U10_gga(T95, T96, subH_in_gga(T95, T96))
U10_gga(T95, T96, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
subH_in_gga(s(T107), s(T108)) → U6_gga(T107, T108, subH_in_gga(T107, T108))
subH_in_gga(T113, 0) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)

The set Q consists of the following terms:

subJ_in_gga(x0, x1)
U10_gga(x0, x1, x2)
subH_in_gga(x0, x1)
U6_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(36) TRUE

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBD_IN_GAA(s(T44), s(T46), X64) → SUBD_IN_GAA(T44, T46, X64)

The TRS R consists of the following rules:

remA_in_gag(T7, s(T16), T9) → U1_gag(T7, T16, T9, pB_in_gaag(T7, T16, X7, T9))
pB_in_gaag(T7, T20, T19, T9) → U11_gaag(T7, T20, T19, T9, subI_in_gaa(T7, T20, T19))
subI_in_gaa(s(T31), T33, X40) → U9_gaa(T31, T33, X40, subD_in_gaa(T31, T33, X40))
subD_in_gaa(s(T44), s(T46), X64) → U3_gaa(T44, T46, X64, subD_in_gaa(T44, T46, X64))
subD_in_gaa(T51, 0, T51) → subD_out_gaa(T51, 0, T51)
U3_gaa(T44, T46, X64, subD_out_gaa(T44, T46, X64)) → subD_out_gaa(s(T44), s(T46), X64)
U9_gaa(T31, T33, X40, subD_out_gaa(T31, T33, X40)) → subI_out_gaa(s(T31), T33, X40)
U11_gaag(T7, T20, T19, T9, subI_out_gaa(T7, T20, T19)) → U12_gaag(T7, T20, T19, T9, remE_in_ggg(T19, T20, T9))
remE_in_ggg(T72, T81, T74) → U4_ggg(T72, T81, T74, pF_in_ggag(T72, T81, X102, T74))
pF_in_ggag(T72, T81, T84, T74) → U13_ggag(T72, T81, T84, T74, subJ_in_gga(T72, T81, T84))
subJ_in_gga(s(T95), T96, X141) → U10_gga(T95, T96, X141, subH_in_gga(T95, T96, X141))
subH_in_gga(s(T107), s(T108), X165) → U6_gga(T107, T108, X165, subH_in_gga(T107, T108, X165))
subH_in_gga(T113, 0, T113) → subH_out_gga(T113, 0, T113)
U6_gga(T107, T108, X165, subH_out_gga(T107, T108, X165)) → subH_out_gga(s(T107), s(T108), X165)
U10_gga(T95, T96, X141, subH_out_gga(T95, T96, X141)) → subJ_out_gga(s(T95), T96, X141)
U13_ggag(T72, T81, T84, T74, subJ_out_gga(T72, T81, T84)) → U14_ggag(T72, T81, T84, T74, remE_in_ggg(T84, T81, T74))
remE_in_ggg(s(T141), T142, s(T141)) → U5_ggg(T141, T142, geqG_in_gg(T141, T142))
geqG_in_gg(s(T153), s(T154)) → U7_gg(T153, T154, geqG_in_gg(T153, T154))
geqG_in_gg(T159, 0) → geqG_out_gg(T159, 0)
U7_gg(T153, T154, geqG_out_gg(T153, T154)) → geqG_out_gg(s(T153), s(T154))
U5_ggg(T141, T142, geqG_out_gg(T141, T142)) → remE_out_ggg(s(T141), T142, s(T141))
U14_ggag(T72, T81, T84, T74, remE_out_ggg(T84, T81, T74)) → pF_out_ggag(T72, T81, T84, T74)
U4_ggg(T72, T81, T74, pF_out_ggag(T72, T81, X102, T74)) → remE_out_ggg(T72, T81, T74)
U12_gaag(T7, T20, T19, T9, remE_out_ggg(T19, T20, T9)) → pB_out_gaag(T7, T20, T19, T9)
U1_gag(T7, T16, T9, pB_out_gaag(T7, T16, X7, T9)) → remA_out_gag(T7, s(T16), T9)
remA_in_gag(s(T184), s(T186), s(T184)) → U2_gag(T184, T186, geqC_in_ga(T184, T186))
geqC_in_ga(s(T197), s(T199)) → U8_ga(T197, T199, geqC_in_ga(T197, T199))
geqC_in_ga(T204, 0) → geqC_out_ga(T204, 0)
U8_ga(T197, T199, geqC_out_ga(T197, T199)) → geqC_out_ga(s(T197), s(T199))
U2_gag(T184, T186, geqC_out_ga(T184, T186)) → remA_out_gag(s(T184), s(T186), s(T184))

The argument filtering Pi contains the following mapping:
remA_in_gag(x1, x2, x3)  =  remA_in_gag(x1, x3)
U1_gag(x1, x2, x3, x4)  =  U1_gag(x1, x3, x4)
pB_in_gaag(x1, x2, x3, x4)  =  pB_in_gaag(x1, x4)
U11_gaag(x1, x2, x3, x4, x5)  =  U11_gaag(x1, x4, x5)
subI_in_gaa(x1, x2, x3)  =  subI_in_gaa(x1)
s(x1)  =  s(x1)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
subD_in_gaa(x1, x2, x3)  =  subD_in_gaa(x1)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
subD_out_gaa(x1, x2, x3)  =  subD_out_gaa(x1, x2, x3)
subI_out_gaa(x1, x2, x3)  =  subI_out_gaa(x1, x2, x3)
U12_gaag(x1, x2, x3, x4, x5)  =  U12_gaag(x1, x2, x3, x4, x5)
remE_in_ggg(x1, x2, x3)  =  remE_in_ggg(x1, x2, x3)
U4_ggg(x1, x2, x3, x4)  =  U4_ggg(x1, x2, x3, x4)
pF_in_ggag(x1, x2, x3, x4)  =  pF_in_ggag(x1, x2, x4)
U13_ggag(x1, x2, x3, x4, x5)  =  U13_ggag(x1, x2, x4, x5)
subJ_in_gga(x1, x2, x3)  =  subJ_in_gga(x1, x2)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x1, x2, x4)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
0  =  0
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
subJ_out_gga(x1, x2, x3)  =  subJ_out_gga(x1, x2, x3)
U14_ggag(x1, x2, x3, x4, x5)  =  U14_ggag(x1, x2, x3, x4, x5)
U5_ggg(x1, x2, x3)  =  U5_ggg(x1, x2, x3)
geqG_in_gg(x1, x2)  =  geqG_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
geqG_out_gg(x1, x2)  =  geqG_out_gg(x1, x2)
remE_out_ggg(x1, x2, x3)  =  remE_out_ggg(x1, x2, x3)
pF_out_ggag(x1, x2, x3, x4)  =  pF_out_ggag(x1, x2, x3, x4)
pB_out_gaag(x1, x2, x3, x4)  =  pB_out_gaag(x1, x2, x3, x4)
remA_out_gag(x1, x2, x3)  =  remA_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3)  =  U2_gag(x1, x3)
geqC_in_ga(x1, x2)  =  geqC_in_ga(x1)
U8_ga(x1, x2, x3)  =  U8_ga(x1, x3)
geqC_out_ga(x1, x2)  =  geqC_out_ga(x1, x2)
SUBD_IN_GAA(x1, x2, x3)  =  SUBD_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBD_IN_GAA(s(T44), s(T46), X64) → SUBD_IN_GAA(T44, T46, X64)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBD_IN_GAA(x1, x2, x3)  =  SUBD_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBD_IN_GAA(s(T44)) → SUBD_IN_GAA(T44)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBD_IN_GAA(s(T44)) → SUBD_IN_GAA(T44)
    The graph contains the following edges 1 > 1

(43) YES