(0) Obligation:

Clauses:

gcd(X, Y, D) :- ','(le(X, Y), gcd_le(X, Y, D)).
gcd(X, Y, D) :- ','(gt(X, Y), gcd_le(Y, X, D)).
gcd_le(0, Y, Y).
gcd_le(s(X), Y, D) :- ','(add(s(X), Z, Y), gcd(s(X), Z, D)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
add(0, X, X).

Query: gcd(g,g,a)

(1) PrologToTRSTransformerProof (SOUND transformation)

Transformed Prolog program to TRS.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F3_IN(T22, T23) → U11(f20_in(T22, T23), T22, T23)
F3_IN(T22, T23) → F20_IN(T22, T23)
F3_IN(T108, T109) → U21(f119_in(T108, T109), T108, T109)
F3_IN(T108, T109) → F119_IN(T108, T109)
F24_IN(s(T38), s(T39)) → U31(f24_in(T38, T39), s(T38), s(T39))
F24_IN(s(T38), s(T39)) → F24_IN(T38, T39)
F91_IN(s(T89), s(T90)) → U41(f91_in(T89, T90), s(T89), s(T90))
F91_IN(s(T89), s(T90)) → F91_IN(T89, T90)
F26_IN(s(T60), T61) → U51(f78_in(T60, T61), s(T60), T61)
F26_IN(s(T60), T61) → F78_IN(T60, T61)
F125_IN(s(T124), s(T125)) → U61(f125_in(T124, T125), s(T124), s(T125))
F125_IN(s(T124), s(T125)) → F125_IN(T124, T125)
F82_IN(T77, s(T78)) → U71(f91_in(T77, T78), T77, s(T78))
F82_IN(T77, s(T78)) → F91_IN(T77, T78)
F20_IN(T22, T23) → U81(f24_in(T22, T23), T22, T23)
F20_IN(T22, T23) → F24_IN(T22, T23)
U81(f24_out1, T22, T23) → U91(f26_in(T22, T23), T22, T23)
U81(f24_out1, T22, T23) → F26_IN(T22, T23)
F78_IN(T60, T61) → U101(f82_in(T60, T61), T60, T61)
F78_IN(T60, T61) → F82_IN(T60, T61)
U101(f82_out1(T66), T60, T61) → U111(f3_in(s(T60), T66), T60, T61, T66)
U101(f82_out1(T66), T60, T61) → F3_IN(s(T60), T66)
F119_IN(T108, T109) → U121(f125_in(T108, T109), T108, T109)
F119_IN(T108, T109) → F125_IN(T108, T109)
U121(f125_out1, T108, T109) → U131(f26_in(T109, T108), T108, T109)
U121(f125_out1, T108, T109) → F26_IN(T109, T108)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 14 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F125_IN(s(T124), s(T125)) → F125_IN(T124, T125)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F125_IN(s(T124), s(T125)) → F125_IN(T124, T125)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F125_IN(s(T124), s(T125)) → F125_IN(T124, T125)
    The graph contains the following edges 1 > 1, 2 > 2

(11) YES

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F91_IN(s(T89), s(T90)) → F91_IN(T89, T90)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F91_IN(s(T89), s(T90)) → F91_IN(T89, T90)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F91_IN(s(T89), s(T90)) → F91_IN(T89, T90)
    The graph contains the following edges 1 > 1, 2 > 2

(16) YES

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F24_IN(s(T38), s(T39)) → F24_IN(T38, T39)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F24_IN(s(T38), s(T39)) → F24_IN(T38, T39)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F24_IN(s(T38), s(T39)) → F24_IN(T38, T39)
    The graph contains the following edges 1 > 1, 2 > 2

(21) YES

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F3_IN(T22, T23) → F20_IN(T22, T23)
F20_IN(T22, T23) → U81(f24_in(T22, T23), T22, T23)
U81(f24_out1, T22, T23) → F26_IN(T22, T23)
F26_IN(s(T60), T61) → F78_IN(T60, T61)
F78_IN(T60, T61) → U101(f82_in(T60, T61), T60, T61)
U101(f82_out1(T66), T60, T61) → F3_IN(s(T60), T66)
F3_IN(T108, T109) → F119_IN(T108, T109)
F119_IN(T108, T109) → U121(f125_in(T108, T109), T108, T109)
U121(f125_out1, T108, T109) → F26_IN(T109, T108)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F78_IN(T60, T61) → U101(f82_in(T60, T61), T60, T61)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(F119_IN(x1, x2)) = x1 + x2   
POL(F20_IN(x1, x2)) = x1 + x2   
POL(F26_IN(x1, x2)) = x1 + x2   
POL(F3_IN(x1, x2)) = x1 + x2   
POL(F78_IN(x1, x2)) = 1 + x1 + x2   
POL(U101(x1, x2, x3)) = x1 + x2   
POL(U121(x1, x2, x3)) = x2 + x3   
POL(U3(x1, x2, x3)) = 0   
POL(U4(x1, x2, x3)) = x1   
POL(U6(x1, x2, x3)) = 0   
POL(U7(x1, x2, x3)) = 1 + x1   
POL(U81(x1, x2, x3)) = x2 + x3   
POL(f125_in(x1, x2)) = 0   
POL(f125_out1) = 0   
POL(f24_in(x1, x2)) = 0   
POL(f24_out1) = 0   
POL(f82_in(x1, x2)) = x2   
POL(f82_out1(x1)) = 1 + x1   
POL(f91_in(x1, x2)) = x2   
POL(f91_out1(x1)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
f91_in(0, T95) → f91_out1(T95)
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F3_IN(T22, T23) → F20_IN(T22, T23)
F20_IN(T22, T23) → U81(f24_in(T22, T23), T22, T23)
U81(f24_out1, T22, T23) → F26_IN(T22, T23)
F26_IN(s(T60), T61) → F78_IN(T60, T61)
U101(f82_out1(T66), T60, T61) → F3_IN(s(T60), T66)
F3_IN(T108, T109) → F119_IN(T108, T109)
F119_IN(T108, T109) → U121(f125_in(T108, T109), T108, T109)
U121(f125_out1, T108, T109) → F26_IN(T109, T108)

The TRS R consists of the following rules:

f3_in(T22, T23) → U1(f20_in(T22, T23), T22, T23)
U1(f20_out1(T25), T22, T23) → f3_out1(T25)
f3_in(T108, T109) → U2(f119_in(T108, T109), T108, T109)
U2(f119_out1(T111), T108, T109) → f3_out1(T111)
f24_in(s(T38), s(T39)) → U3(f24_in(T38, T39), s(T38), s(T39))
U3(f24_out1, s(T38), s(T39)) → f24_out1
f24_in(0, s(T46)) → f24_out1
f24_in(0, 0) → f24_out1
f91_in(s(T89), s(T90)) → U4(f91_in(T89, T90), s(T89), s(T90))
U4(f91_out1(X110), s(T89), s(T90)) → f91_out1(X110)
f91_in(0, T95) → f91_out1(T95)
f26_in(0, T53) → f26_out1(T53)
f26_in(s(T60), T61) → U5(f78_in(T60, T61), s(T60), T61)
U5(f78_out1(X58, T63), s(T60), T61) → f26_out1(T63)
f125_in(s(T124), s(T125)) → U6(f125_in(T124, T125), s(T124), s(T125))
U6(f125_out1, s(T124), s(T125)) → f125_out1
f125_in(s(T130), 0) → f125_out1
f82_in(T77, s(T78)) → U7(f91_in(T77, T78), T77, s(T78))
U7(f91_out1(X86), T77, s(T78)) → f82_out1(X86)
f20_in(T22, T23) → U8(f24_in(T22, T23), T22, T23)
U8(f24_out1, T22, T23) → U9(f26_in(T22, T23), T22, T23)
U9(f26_out1(T25), T22, T23) → f20_out1(T25)
f78_in(T60, T61) → U10(f82_in(T60, T61), T60, T61)
U10(f82_out1(T66), T60, T61) → U11(f3_in(s(T60), T66), T60, T61, T66)
U11(f3_out1(T63), T60, T61, T66) → f78_out1(T66, T63)
f119_in(T108, T109) → U12(f125_in(T108, T109), T108, T109)
U12(f125_out1, T108, T109) → U13(f26_in(T109, T108), T108, T109)
U13(f26_out1(T111), T108, T109) → f119_out1(T111)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 8 less nodes.

(26) TRUE