(0) Obligation:

Clauses:

myis(Z, X) :- evaluate(X, Z).
evaluate(+(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), add(X1, Y1, Z))).
evaluate(-(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), sub(X1, Y1, Z))).
evaluate(*(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), mult(X1, Y1, Z))).
evaluate(X, X) :- myinteger(X).
myinteger(s(X)) :- myinteger(X).
myinteger(0).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
add(0, X, X).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
mult(s(X), Y, R) :- ','(mult(X, Y, Z), add(Y, Z, R)).
mult(0, Y, 0).
notEq(s(X), s(Y)) :- notEq(X, Y).
notEq(s(X), 0).
notEq(0, s(X)).
lt(s(X), s(Y)) :- lt(X, Y).
lt(0, s(Y)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).

Query: myis(a,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MYISA_IN_AG(T7, T6) → U1_AG(T7, T6, evaluateB_in_ga(T6, T7))
MYISA_IN_AG(T7, T6) → EVALUATEB_IN_GA(T6, T7)
EVALUATEB_IN_GA(+(T20, T21), T23) → U2_GA(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
EVALUATEB_IN_GA(+(T20, T21), T23) → PC_IN_GAGAA(T20, X25, T21, X26, T23)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
PC_IN_GAGAA(T20, T26, T21, X26, T23) → EVALUATEB_IN_GA(T20, T26)
EVALUATEB_IN_GA(-(T71, T72), T74) → U3_GA(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
EVALUATEB_IN_GA(-(T71, T72), T74) → PD_IN_GAGAA(T71, X94, T72, X95, T74)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
PD_IN_GAGAA(T71, T77, T72, X95, T74) → EVALUATEB_IN_GA(T71, T77)
EVALUATEB_IN_GA(*(T122, T123), T125) → U4_GA(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
EVALUATEB_IN_GA(*(T122, T123), T125) → PE_IN_GAGAA(T122, X163, T123, X164, T125)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
PE_IN_GAGAA(T122, T128, T123, X164, T125) → EVALUATEB_IN_GA(T122, T128)
EVALUATEB_IN_GA(T203, T203) → U5_GA(T203, myintegerF_in_g(T203))
EVALUATEB_IN_GA(T203, T203) → MYINTEGERF_IN_G(T203)
MYINTEGERF_IN_G(s(T209)) → U10_G(T209, myintegerF_in_g(T209))
MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_GAGAA(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, X164, T128, T125)
PP_IN_GAGA(T123, T133, T128, T125) → U22_GAGA(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
PP_IN_GAGA(T123, T133, T128, T125) → EVALUATEB_IN_GA(T123, T133)
U22_GAGA(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_GAGA(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
U22_GAGA(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → MULTL_IN_GGA(T128, T133, T125)
MULTL_IN_GGA(s(T151), T152, T154) → U11_GGA(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
MULTL_IN_GGA(s(T151), T152, T154) → PM_IN_GGAA(T151, T152, X210, T154)
PM_IN_GGAA(T151, T152, T157, T154) → U24_GGAA(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
PM_IN_GGAA(T151, T152, T157, T154) → MULTI_IN_GGA(T151, T152, T157)
MULTI_IN_GGA(s(T168), T169, X243) → U8_GGA(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
MULTI_IN_GGA(s(T168), T169, X243) → PJ_IN_GGAA(T168, T169, X242, X243)
PJ_IN_GGAA(T168, T169, T172, X243) → U26_GGAA(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
PJ_IN_GGAA(T168, T169, T172, X243) → MULTI_IN_GGA(T168, T169, T172)
U26_GGAA(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_GGAA(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
U26_GGAA(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → ADDK_IN_GGA(T169, T172, X243)
ADDK_IN_GGA(s(T185), T186, s(X277)) → U9_GGA(T185, T186, X277, addK_in_gga(T185, T186, X277))
ADDK_IN_GGA(s(T185), T186, s(X277)) → ADDK_IN_GGA(T185, T186, X277)
U24_GGAA(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_GGAA(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
U24_GGAA(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → ADDG_IN_GGA(T152, T157, T154)
ADDG_IN_GGA(s(T49), T50, s(T52)) → U6_GGA(T49, T50, T52, addG_in_gga(T49, T50, T52))
ADDG_IN_GGA(s(T49), T50, s(T52)) → ADDG_IN_GGA(T49, T50, T52)
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_GAGAA(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, X95, T77, T74)
PO_IN_GAGA(T72, T82, T77, T74) → U18_GAGA(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
PO_IN_GAGA(T72, T82, T77, T74) → EVALUATEB_IN_GA(T72, T82)
U18_GAGA(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_GAGA(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
U18_GAGA(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → SUBH_IN_GGA(T77, T82, T74)
SUBH_IN_GGA(s(T100), s(T101), T103) → U7_GGA(T100, T101, T103, subH_in_gga(T100, T101, T103))
SUBH_IN_GGA(s(T100), s(T101), T103) → SUBH_IN_GGA(T100, T101, T103)
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_GAGAA(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, X26, T26, T23)
PN_IN_GAGA(T21, T31, T26, T23) → U14_GAGA(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
PN_IN_GAGA(T21, T31, T26, T23) → EVALUATEB_IN_GA(T21, T31)
U14_GAGA(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_GAGA(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U14_GAGA(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → ADDG_IN_GGA(T26, T31, T23)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
MYISA_IN_AG(x1, x2)  =  MYISA_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
EVALUATEB_IN_GA(x1, x2)  =  EVALUATEB_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U12_GAGAA(x1, x2, x3, x4, x5, x6)  =  U12_GAGAA(x1, x3, x6)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
PD_IN_GAGAA(x1, x2, x3, x4, x5)  =  PD_IN_GAGAA(x1, x3)
U16_GAGAA(x1, x2, x3, x4, x5, x6)  =  U16_GAGAA(x1, x3, x6)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
PE_IN_GAGAA(x1, x2, x3, x4, x5)  =  PE_IN_GAGAA(x1, x3)
U20_GAGAA(x1, x2, x3, x4, x5, x6)  =  U20_GAGAA(x1, x3, x6)
U5_GA(x1, x2)  =  U5_GA(x1, x2)
MYINTEGERF_IN_G(x1)  =  MYINTEGERF_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U21_GAGAA(x1, x2, x3, x4, x5, x6)  =  U21_GAGAA(x1, x2, x3, x6)
PP_IN_GAGA(x1, x2, x3, x4)  =  PP_IN_GAGA(x1, x3)
U22_GAGA(x1, x2, x3, x4, x5)  =  U22_GAGA(x1, x3, x5)
U23_GAGA(x1, x2, x3, x4, x5)  =  U23_GAGA(x1, x2, x3, x5)
MULTL_IN_GGA(x1, x2, x3)  =  MULTL_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U24_GGAA(x1, x2, x3, x4, x5)  =  U24_GGAA(x1, x2, x5)
MULTI_IN_GGA(x1, x2, x3)  =  MULTI_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)
U26_GGAA(x1, x2, x3, x4, x5)  =  U26_GGAA(x1, x2, x5)
U27_GGAA(x1, x2, x3, x4, x5)  =  U27_GGAA(x1, x2, x3, x5)
ADDK_IN_GGA(x1, x2, x3)  =  ADDK_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U25_GGAA(x1, x2, x3, x4, x5)  =  U25_GGAA(x1, x2, x3, x5)
ADDG_IN_GGA(x1, x2, x3)  =  ADDG_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U17_GAGAA(x1, x2, x3, x4, x5, x6)  =  U17_GAGAA(x1, x2, x3, x6)
PO_IN_GAGA(x1, x2, x3, x4)  =  PO_IN_GAGA(x1, x3)
U18_GAGA(x1, x2, x3, x4, x5)  =  U18_GAGA(x1, x3, x5)
U19_GAGA(x1, x2, x3, x4, x5)  =  U19_GAGA(x1, x2, x3, x5)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U13_GAGAA(x1, x2, x3, x4, x5, x6)  =  U13_GAGAA(x1, x2, x3, x6)
PN_IN_GAGA(x1, x2, x3, x4)  =  PN_IN_GAGA(x1, x3)
U14_GAGA(x1, x2, x3, x4, x5)  =  U14_GAGA(x1, x3, x5)
U15_GAGA(x1, x2, x3, x4, x5)  =  U15_GAGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYISA_IN_AG(T7, T6) → U1_AG(T7, T6, evaluateB_in_ga(T6, T7))
MYISA_IN_AG(T7, T6) → EVALUATEB_IN_GA(T6, T7)
EVALUATEB_IN_GA(+(T20, T21), T23) → U2_GA(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
EVALUATEB_IN_GA(+(T20, T21), T23) → PC_IN_GAGAA(T20, X25, T21, X26, T23)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
PC_IN_GAGAA(T20, T26, T21, X26, T23) → EVALUATEB_IN_GA(T20, T26)
EVALUATEB_IN_GA(-(T71, T72), T74) → U3_GA(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
EVALUATEB_IN_GA(-(T71, T72), T74) → PD_IN_GAGAA(T71, X94, T72, X95, T74)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
PD_IN_GAGAA(T71, T77, T72, X95, T74) → EVALUATEB_IN_GA(T71, T77)
EVALUATEB_IN_GA(*(T122, T123), T125) → U4_GA(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
EVALUATEB_IN_GA(*(T122, T123), T125) → PE_IN_GAGAA(T122, X163, T123, X164, T125)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
PE_IN_GAGAA(T122, T128, T123, X164, T125) → EVALUATEB_IN_GA(T122, T128)
EVALUATEB_IN_GA(T203, T203) → U5_GA(T203, myintegerF_in_g(T203))
EVALUATEB_IN_GA(T203, T203) → MYINTEGERF_IN_G(T203)
MYINTEGERF_IN_G(s(T209)) → U10_G(T209, myintegerF_in_g(T209))
MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_GAGAA(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, X164, T128, T125)
PP_IN_GAGA(T123, T133, T128, T125) → U22_GAGA(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
PP_IN_GAGA(T123, T133, T128, T125) → EVALUATEB_IN_GA(T123, T133)
U22_GAGA(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_GAGA(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
U22_GAGA(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → MULTL_IN_GGA(T128, T133, T125)
MULTL_IN_GGA(s(T151), T152, T154) → U11_GGA(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
MULTL_IN_GGA(s(T151), T152, T154) → PM_IN_GGAA(T151, T152, X210, T154)
PM_IN_GGAA(T151, T152, T157, T154) → U24_GGAA(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
PM_IN_GGAA(T151, T152, T157, T154) → MULTI_IN_GGA(T151, T152, T157)
MULTI_IN_GGA(s(T168), T169, X243) → U8_GGA(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
MULTI_IN_GGA(s(T168), T169, X243) → PJ_IN_GGAA(T168, T169, X242, X243)
PJ_IN_GGAA(T168, T169, T172, X243) → U26_GGAA(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
PJ_IN_GGAA(T168, T169, T172, X243) → MULTI_IN_GGA(T168, T169, T172)
U26_GGAA(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_GGAA(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
U26_GGAA(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → ADDK_IN_GGA(T169, T172, X243)
ADDK_IN_GGA(s(T185), T186, s(X277)) → U9_GGA(T185, T186, X277, addK_in_gga(T185, T186, X277))
ADDK_IN_GGA(s(T185), T186, s(X277)) → ADDK_IN_GGA(T185, T186, X277)
U24_GGAA(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_GGAA(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
U24_GGAA(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → ADDG_IN_GGA(T152, T157, T154)
ADDG_IN_GGA(s(T49), T50, s(T52)) → U6_GGA(T49, T50, T52, addG_in_gga(T49, T50, T52))
ADDG_IN_GGA(s(T49), T50, s(T52)) → ADDG_IN_GGA(T49, T50, T52)
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_GAGAA(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, X95, T77, T74)
PO_IN_GAGA(T72, T82, T77, T74) → U18_GAGA(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
PO_IN_GAGA(T72, T82, T77, T74) → EVALUATEB_IN_GA(T72, T82)
U18_GAGA(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_GAGA(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
U18_GAGA(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → SUBH_IN_GGA(T77, T82, T74)
SUBH_IN_GGA(s(T100), s(T101), T103) → U7_GGA(T100, T101, T103, subH_in_gga(T100, T101, T103))
SUBH_IN_GGA(s(T100), s(T101), T103) → SUBH_IN_GGA(T100, T101, T103)
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_GAGAA(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, X26, T26, T23)
PN_IN_GAGA(T21, T31, T26, T23) → U14_GAGA(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
PN_IN_GAGA(T21, T31, T26, T23) → EVALUATEB_IN_GA(T21, T31)
U14_GAGA(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_GAGA(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U14_GAGA(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → ADDG_IN_GGA(T26, T31, T23)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
MYISA_IN_AG(x1, x2)  =  MYISA_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
EVALUATEB_IN_GA(x1, x2)  =  EVALUATEB_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U12_GAGAA(x1, x2, x3, x4, x5, x6)  =  U12_GAGAA(x1, x3, x6)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
PD_IN_GAGAA(x1, x2, x3, x4, x5)  =  PD_IN_GAGAA(x1, x3)
U16_GAGAA(x1, x2, x3, x4, x5, x6)  =  U16_GAGAA(x1, x3, x6)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
PE_IN_GAGAA(x1, x2, x3, x4, x5)  =  PE_IN_GAGAA(x1, x3)
U20_GAGAA(x1, x2, x3, x4, x5, x6)  =  U20_GAGAA(x1, x3, x6)
U5_GA(x1, x2)  =  U5_GA(x1, x2)
MYINTEGERF_IN_G(x1)  =  MYINTEGERF_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U21_GAGAA(x1, x2, x3, x4, x5, x6)  =  U21_GAGAA(x1, x2, x3, x6)
PP_IN_GAGA(x1, x2, x3, x4)  =  PP_IN_GAGA(x1, x3)
U22_GAGA(x1, x2, x3, x4, x5)  =  U22_GAGA(x1, x3, x5)
U23_GAGA(x1, x2, x3, x4, x5)  =  U23_GAGA(x1, x2, x3, x5)
MULTL_IN_GGA(x1, x2, x3)  =  MULTL_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U24_GGAA(x1, x2, x3, x4, x5)  =  U24_GGAA(x1, x2, x5)
MULTI_IN_GGA(x1, x2, x3)  =  MULTI_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)
U26_GGAA(x1, x2, x3, x4, x5)  =  U26_GGAA(x1, x2, x5)
U27_GGAA(x1, x2, x3, x4, x5)  =  U27_GGAA(x1, x2, x3, x5)
ADDK_IN_GGA(x1, x2, x3)  =  ADDK_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U25_GGAA(x1, x2, x3, x4, x5)  =  U25_GGAA(x1, x2, x3, x5)
ADDG_IN_GGA(x1, x2, x3)  =  ADDG_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U17_GAGAA(x1, x2, x3, x4, x5, x6)  =  U17_GAGAA(x1, x2, x3, x6)
PO_IN_GAGA(x1, x2, x3, x4)  =  PO_IN_GAGA(x1, x3)
U18_GAGA(x1, x2, x3, x4, x5)  =  U18_GAGA(x1, x3, x5)
U19_GAGA(x1, x2, x3, x4, x5)  =  U19_GAGA(x1, x2, x3, x5)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U13_GAGAA(x1, x2, x3, x4, x5, x6)  =  U13_GAGAA(x1, x2, x3, x6)
PN_IN_GAGA(x1, x2, x3, x4)  =  PN_IN_GAGA(x1, x3)
U14_GAGA(x1, x2, x3, x4, x5)  =  U14_GAGA(x1, x3, x5)
U15_GAGA(x1, x2, x3, x4, x5)  =  U15_GAGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 33 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T100), s(T101), T103) → SUBH_IN_GGA(T100, T101, T103)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T100), s(T101), T103) → SUBH_IN_GGA(T100, T101, T103)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBH_IN_GGA(x1, x2, x3)  =  SUBH_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBH_IN_GGA(s(T100), s(T101)) → SUBH_IN_GGA(T100, T101)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBH_IN_GGA(s(T100), s(T101)) → SUBH_IN_GGA(T100, T101)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDG_IN_GGA(s(T49), T50, s(T52)) → ADDG_IN_GGA(T49, T50, T52)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
ADDG_IN_GGA(x1, x2, x3)  =  ADDG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDG_IN_GGA(s(T49), T50, s(T52)) → ADDG_IN_GGA(T49, T50, T52)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADDG_IN_GGA(x1, x2, x3)  =  ADDG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADDG_IN_GGA(s(T49), T50) → ADDG_IN_GGA(T49, T50)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADDG_IN_GGA(s(T49), T50) → ADDG_IN_GGA(T49, T50)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDK_IN_GGA(s(T185), T186, s(X277)) → ADDK_IN_GGA(T185, T186, X277)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
ADDK_IN_GGA(x1, x2, x3)  =  ADDK_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDK_IN_GGA(s(T185), T186, s(X277)) → ADDK_IN_GGA(T185, T186, X277)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADDK_IN_GGA(x1, x2, x3)  =  ADDK_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADDK_IN_GGA(s(T185), T186) → ADDK_IN_GGA(T185, T186)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADDK_IN_GGA(s(T185), T186) → ADDK_IN_GGA(T185, T186)
    The graph contains the following edges 1 > 1, 2 >= 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTI_IN_GGA(s(T168), T169, X243) → PJ_IN_GGAA(T168, T169, X242, X243)
PJ_IN_GGAA(T168, T169, T172, X243) → MULTI_IN_GGA(T168, T169, T172)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
MULTI_IN_GGA(x1, x2, x3)  =  MULTI_IN_GGA(x1, x2)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTI_IN_GGA(s(T168), T169, X243) → PJ_IN_GGAA(T168, T169, X242, X243)
PJ_IN_GGAA(T168, T169, T172, X243) → MULTI_IN_GGA(T168, T169, T172)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MULTI_IN_GGA(x1, x2, x3)  =  MULTI_IN_GGA(x1, x2)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULTI_IN_GGA(s(T168), T169) → PJ_IN_GGAA(T168, T169)
PJ_IN_GGAA(T168, T169) → MULTI_IN_GGA(T168, T169)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PJ_IN_GGAA(T168, T169) → MULTI_IN_GGA(T168, T169)
    The graph contains the following edges 1 >= 1, 2 >= 2

  • MULTI_IN_GGA(s(T168), T169) → PJ_IN_GGAA(T168, T169)
    The graph contains the following edges 1 > 1, 2 >= 2

(34) YES

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
MYINTEGERF_IN_G(x1)  =  MYINTEGERF_IN_G(x1)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(40) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MYINTEGERF_IN_G(s(T209)) → MYINTEGERF_IN_G(T209)
    The graph contains the following edges 1 > 1

(41) YES

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVALUATEB_IN_GA(+(T20, T21), T23) → PC_IN_GAGAA(T20, X25, T21, X26, T23)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, X26, T26, T23)
PN_IN_GAGA(T21, T31, T26, T23) → EVALUATEB_IN_GA(T21, T31)
EVALUATEB_IN_GA(-(T71, T72), T74) → PD_IN_GAGAA(T71, X94, T72, X95, T74)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, X95, T77, T74)
PO_IN_GAGA(T72, T82, T77, T74) → EVALUATEB_IN_GA(T72, T82)
EVALUATEB_IN_GA(*(T122, T123), T125) → PE_IN_GAGAA(T122, X163, T123, X164, T125)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, X164, T128, T125)
PP_IN_GAGA(T123, T133, T128, T125) → EVALUATEB_IN_GA(T123, T133)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → EVALUATEB_IN_GA(T122, T128)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → EVALUATEB_IN_GA(T71, T77)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → EVALUATEB_IN_GA(T20, T26)

The TRS R consists of the following rules:

myisA_in_ag(T7, T6) → U1_ag(T7, T6, evaluateB_in_ga(T6, T7))
evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U1_ag(T7, T6, evaluateB_out_ga(T6, T7)) → myisA_out_ag(T7, T6)

The argument filtering Pi contains the following mapping:
myisA_in_ag(x1, x2)  =  myisA_in_ag(x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
myisA_out_ag(x1, x2)  =  myisA_out_ag(x1, x2)
EVALUATEB_IN_GA(x1, x2)  =  EVALUATEB_IN_GA(x1)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U12_GAGAA(x1, x2, x3, x4, x5, x6)  =  U12_GAGAA(x1, x3, x6)
PD_IN_GAGAA(x1, x2, x3, x4, x5)  =  PD_IN_GAGAA(x1, x3)
U16_GAGAA(x1, x2, x3, x4, x5, x6)  =  U16_GAGAA(x1, x3, x6)
PE_IN_GAGAA(x1, x2, x3, x4, x5)  =  PE_IN_GAGAA(x1, x3)
U20_GAGAA(x1, x2, x3, x4, x5, x6)  =  U20_GAGAA(x1, x3, x6)
PP_IN_GAGA(x1, x2, x3, x4)  =  PP_IN_GAGA(x1, x3)
PO_IN_GAGA(x1, x2, x3, x4)  =  PO_IN_GAGA(x1, x3)
PN_IN_GAGA(x1, x2, x3, x4)  =  PN_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(43) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(44) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVALUATEB_IN_GA(+(T20, T21), T23) → PC_IN_GAGAA(T20, X25, T21, X26, T23)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
U12_GAGAA(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, X26, T26, T23)
PN_IN_GAGA(T21, T31, T26, T23) → EVALUATEB_IN_GA(T21, T31)
EVALUATEB_IN_GA(-(T71, T72), T74) → PD_IN_GAGAA(T71, X94, T72, X95, T74)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
U16_GAGAA(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, X95, T77, T74)
PO_IN_GAGA(T72, T82, T77, T74) → EVALUATEB_IN_GA(T72, T82)
EVALUATEB_IN_GA(*(T122, T123), T125) → PE_IN_GAGAA(T122, X163, T123, X164, T125)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
U20_GAGAA(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, X164, T128, T125)
PP_IN_GAGA(T123, T133, T128, T125) → EVALUATEB_IN_GA(T123, T133)
PE_IN_GAGAA(T122, T128, T123, X164, T125) → EVALUATEB_IN_GA(T122, T128)
PD_IN_GAGAA(T71, T77, T72, X95, T74) → EVALUATEB_IN_GA(T71, T77)
PC_IN_GAGAA(T20, T26, T21, X26, T23) → EVALUATEB_IN_GA(T20, T26)

The TRS R consists of the following rules:

evaluateB_in_ga(+(T20, T21), T23) → U2_ga(T20, T21, T23, pC_in_gagaa(T20, X25, T21, X26, T23))
evaluateB_in_ga(-(T71, T72), T74) → U3_ga(T71, T72, T74, pD_in_gagaa(T71, X94, T72, X95, T74))
evaluateB_in_ga(*(T122, T123), T125) → U4_ga(T122, T123, T125, pE_in_gagaa(T122, X163, T123, X164, T125))
evaluateB_in_ga(T203, T203) → U5_ga(T203, myintegerF_in_g(T203))
U2_ga(T20, T21, T23, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U3_ga(T71, T72, T74, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U4_ga(T122, T123, T125, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
pC_in_gagaa(T20, T26, T21, X26, T23) → U12_gagaa(T20, T26, T21, X26, T23, evaluateB_in_ga(T20, T26))
pD_in_gagaa(T71, T77, T72, X95, T74) → U16_gagaa(T71, T77, T72, X95, T74, evaluateB_in_ga(T71, T77))
pE_in_gagaa(T122, T128, T123, X164, T125) → U20_gagaa(T122, T128, T123, X164, T125, evaluateB_in_ga(T122, T128))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U12_gagaa(T20, T26, T21, X26, T23, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, X26, T23, pN_in_gaga(T21, X26, T26, T23))
U16_gagaa(T71, T77, T72, X95, T74, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, X95, T74, pO_in_gaga(T72, X95, T77, T74))
U20_gagaa(T122, T128, T123, X164, T125, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, X164, T125, pP_in_gaga(T123, X164, T128, T125))
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U13_gagaa(T20, T26, T21, X26, T23, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U17_gagaa(T71, T77, T72, X95, T74, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U21_gagaa(T122, T128, T123, X164, T125, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
pN_in_gaga(T21, T31, T26, T23) → U14_gaga(T21, T31, T26, T23, evaluateB_in_ga(T21, T31))
pO_in_gaga(T72, T82, T77, T74) → U18_gaga(T72, T82, T77, T74, evaluateB_in_ga(T72, T82))
pP_in_gaga(T123, T133, T128, T125) → U22_gaga(T123, T133, T128, T125, evaluateB_in_ga(T123, T133))
U14_gaga(T21, T31, T26, T23, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, T23, addG_in_gga(T26, T31, T23))
U18_gaga(T72, T82, T77, T74, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, T74, subH_in_gga(T77, T82, T74))
U22_gaga(T123, T133, T128, T125, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, T125, multL_in_gga(T128, T133, T125))
U15_gaga(T21, T31, T26, T23, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U19_gaga(T72, T82, T77, T74, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U23_gaga(T123, T133, T128, T125, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
addG_in_gga(s(T49), T50, s(T52)) → U6_gga(T49, T50, T52, addG_in_gga(T49, T50, T52))
addG_in_gga(0, T58, T58) → addG_out_gga(0, T58, T58)
subH_in_gga(s(T100), s(T101), T103) → U7_gga(T100, T101, T103, subH_in_gga(T100, T101, T103))
subH_in_gga(T109, 0, T109) → subH_out_gga(T109, 0, T109)
multL_in_gga(s(T151), T152, T154) → U11_gga(T151, T152, T154, pM_in_ggaa(T151, T152, X210, T154))
multL_in_gga(0, T200, 0) → multL_out_gga(0, T200, 0)
U6_gga(T49, T50, T52, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U7_gga(T100, T101, T103, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U11_gga(T151, T152, T154, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
pM_in_ggaa(T151, T152, T157, T154) → U24_ggaa(T151, T152, T157, T154, multI_in_gga(T151, T152, T157))
U24_ggaa(T151, T152, T157, T154, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, T154, addG_in_gga(T152, T157, T154))
multI_in_gga(s(T168), T169, X243) → U8_gga(T168, T169, X243, pJ_in_ggaa(T168, T169, X242, X243))
multI_in_gga(0, T194, 0) → multI_out_gga(0, T194, 0)
U25_ggaa(T151, T152, T157, T154, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U8_gga(T168, T169, X243, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
pJ_in_ggaa(T168, T169, T172, X243) → U26_ggaa(T168, T169, T172, X243, multI_in_gga(T168, T169, T172))
U26_ggaa(T168, T169, T172, X243, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, X243, addK_in_gga(T169, T172, X243))
U27_ggaa(T168, T169, T172, X243, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
addK_in_gga(s(T185), T186, s(X277)) → U9_gga(T185, T186, X277, addK_in_gga(T185, T186, X277))
addK_in_gga(0, T191, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, X277, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))

The argument filtering Pi contains the following mapping:
evaluateB_in_ga(x1, x2)  =  evaluateB_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U12_gagaa(x1, x2, x3, x4, x5, x6)  =  U12_gagaa(x1, x3, x6)
-(x1, x2)  =  -(x1, x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
pD_in_gagaa(x1, x2, x3, x4, x5)  =  pD_in_gagaa(x1, x3)
U16_gagaa(x1, x2, x3, x4, x5, x6)  =  U16_gagaa(x1, x3, x6)
*(x1, x2)  =  *(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pE_in_gagaa(x1, x2, x3, x4, x5)  =  pE_in_gagaa(x1, x3)
U20_gagaa(x1, x2, x3, x4, x5, x6)  =  U20_gagaa(x1, x3, x6)
U5_ga(x1, x2)  =  U5_ga(x1, x2)
myintegerF_in_g(x1)  =  myintegerF_in_g(x1)
s(x1)  =  s(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
0  =  0
myintegerF_out_g(x1)  =  myintegerF_out_g(x1)
evaluateB_out_ga(x1, x2)  =  evaluateB_out_ga(x1, x2)
U21_gagaa(x1, x2, x3, x4, x5, x6)  =  U21_gagaa(x1, x2, x3, x6)
pP_in_gaga(x1, x2, x3, x4)  =  pP_in_gaga(x1, x3)
U22_gaga(x1, x2, x3, x4, x5)  =  U22_gaga(x1, x3, x5)
U23_gaga(x1, x2, x3, x4, x5)  =  U23_gaga(x1, x2, x3, x5)
multL_in_gga(x1, x2, x3)  =  multL_in_gga(x1, x2)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U24_ggaa(x1, x2, x3, x4, x5)  =  U24_ggaa(x1, x2, x5)
multI_in_gga(x1, x2, x3)  =  multI_in_gga(x1, x2)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U26_ggaa(x1, x2, x3, x4, x5)  =  U26_ggaa(x1, x2, x5)
multI_out_gga(x1, x2, x3)  =  multI_out_gga(x1, x2, x3)
U27_ggaa(x1, x2, x3, x4, x5)  =  U27_ggaa(x1, x2, x3, x5)
addK_in_gga(x1, x2, x3)  =  addK_in_gga(x1, x2)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
addK_out_gga(x1, x2, x3)  =  addK_out_gga(x1, x2, x3)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
U25_ggaa(x1, x2, x3, x4, x5)  =  U25_ggaa(x1, x2, x3, x5)
addG_in_gga(x1, x2, x3)  =  addG_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
addG_out_gga(x1, x2, x3)  =  addG_out_gga(x1, x2, x3)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
multL_out_gga(x1, x2, x3)  =  multL_out_gga(x1, x2, x3)
pP_out_gaga(x1, x2, x3, x4)  =  pP_out_gaga(x1, x2, x3, x4)
pE_out_gagaa(x1, x2, x3, x4, x5)  =  pE_out_gagaa(x1, x2, x3, x4, x5)
U17_gagaa(x1, x2, x3, x4, x5, x6)  =  U17_gagaa(x1, x2, x3, x6)
pO_in_gaga(x1, x2, x3, x4)  =  pO_in_gaga(x1, x3)
U18_gaga(x1, x2, x3, x4, x5)  =  U18_gaga(x1, x3, x5)
U19_gaga(x1, x2, x3, x4, x5)  =  U19_gaga(x1, x2, x3, x5)
subH_in_gga(x1, x2, x3)  =  subH_in_gga(x1, x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
subH_out_gga(x1, x2, x3)  =  subH_out_gga(x1, x2, x3)
pO_out_gaga(x1, x2, x3, x4)  =  pO_out_gaga(x1, x2, x3, x4)
pD_out_gagaa(x1, x2, x3, x4, x5)  =  pD_out_gagaa(x1, x2, x3, x4, x5)
U13_gagaa(x1, x2, x3, x4, x5, x6)  =  U13_gagaa(x1, x2, x3, x6)
pN_in_gaga(x1, x2, x3, x4)  =  pN_in_gaga(x1, x3)
U14_gaga(x1, x2, x3, x4, x5)  =  U14_gaga(x1, x3, x5)
U15_gaga(x1, x2, x3, x4, x5)  =  U15_gaga(x1, x2, x3, x5)
pN_out_gaga(x1, x2, x3, x4)  =  pN_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
EVALUATEB_IN_GA(x1, x2)  =  EVALUATEB_IN_GA(x1)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U12_GAGAA(x1, x2, x3, x4, x5, x6)  =  U12_GAGAA(x1, x3, x6)
PD_IN_GAGAA(x1, x2, x3, x4, x5)  =  PD_IN_GAGAA(x1, x3)
U16_GAGAA(x1, x2, x3, x4, x5, x6)  =  U16_GAGAA(x1, x3, x6)
PE_IN_GAGAA(x1, x2, x3, x4, x5)  =  PE_IN_GAGAA(x1, x3)
U20_GAGAA(x1, x2, x3, x4, x5, x6)  =  U20_GAGAA(x1, x3, x6)
PP_IN_GAGA(x1, x2, x3, x4)  =  PP_IN_GAGA(x1, x3)
PO_IN_GAGA(x1, x2, x3, x4)  =  PO_IN_GAGA(x1, x3)
PN_IN_GAGA(x1, x2, x3, x4)  =  PN_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(45) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVALUATEB_IN_GA(+(T20, T21)) → PC_IN_GAGAA(T20, T21)
PC_IN_GAGAA(T20, T21) → U12_GAGAA(T20, T21, evaluateB_in_ga(T20))
U12_GAGAA(T20, T21, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, T26)
PN_IN_GAGA(T21, T26) → EVALUATEB_IN_GA(T21)
EVALUATEB_IN_GA(-(T71, T72)) → PD_IN_GAGAA(T71, T72)
PD_IN_GAGAA(T71, T72) → U16_GAGAA(T71, T72, evaluateB_in_ga(T71))
U16_GAGAA(T71, T72, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, T77)
PO_IN_GAGA(T72, T77) → EVALUATEB_IN_GA(T72)
EVALUATEB_IN_GA(*(T122, T123)) → PE_IN_GAGAA(T122, T123)
PE_IN_GAGAA(T122, T123) → U20_GAGAA(T122, T123, evaluateB_in_ga(T122))
U20_GAGAA(T122, T123, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, T128)
PP_IN_GAGA(T123, T128) → EVALUATEB_IN_GA(T123)
PE_IN_GAGAA(T122, T123) → EVALUATEB_IN_GA(T122)
PD_IN_GAGAA(T71, T72) → EVALUATEB_IN_GA(T71)
PC_IN_GAGAA(T20, T21) → EVALUATEB_IN_GA(T20)

The TRS R consists of the following rules:

evaluateB_in_ga(+(T20, T21)) → U2_ga(T20, T21, pC_in_gagaa(T20, T21))
evaluateB_in_ga(-(T71, T72)) → U3_ga(T71, T72, pD_in_gagaa(T71, T72))
evaluateB_in_ga(*(T122, T123)) → U4_ga(T122, T123, pE_in_gagaa(T122, T123))
evaluateB_in_ga(T203) → U5_ga(T203, myintegerF_in_g(T203))
U2_ga(T20, T21, pC_out_gagaa(T20, X25, T21, X26, T23)) → evaluateB_out_ga(+(T20, T21), T23)
U3_ga(T71, T72, pD_out_gagaa(T71, X94, T72, X95, T74)) → evaluateB_out_ga(-(T71, T72), T74)
U4_ga(T122, T123, pE_out_gagaa(T122, X163, T123, X164, T125)) → evaluateB_out_ga(*(T122, T123), T125)
U5_ga(T203, myintegerF_out_g(T203)) → evaluateB_out_ga(T203, T203)
pC_in_gagaa(T20, T21) → U12_gagaa(T20, T21, evaluateB_in_ga(T20))
pD_in_gagaa(T71, T72) → U16_gagaa(T71, T72, evaluateB_in_ga(T71))
pE_in_gagaa(T122, T123) → U20_gagaa(T122, T123, evaluateB_in_ga(T122))
myintegerF_in_g(s(T209)) → U10_g(T209, myintegerF_in_g(T209))
myintegerF_in_g(0) → myintegerF_out_g(0)
U12_gagaa(T20, T21, evaluateB_out_ga(T20, T26)) → U13_gagaa(T20, T26, T21, pN_in_gaga(T21, T26))
U16_gagaa(T71, T72, evaluateB_out_ga(T71, T77)) → U17_gagaa(T71, T77, T72, pO_in_gaga(T72, T77))
U20_gagaa(T122, T123, evaluateB_out_ga(T122, T128)) → U21_gagaa(T122, T128, T123, pP_in_gaga(T123, T128))
U10_g(T209, myintegerF_out_g(T209)) → myintegerF_out_g(s(T209))
U13_gagaa(T20, T26, T21, pN_out_gaga(T21, X26, T26, T23)) → pC_out_gagaa(T20, T26, T21, X26, T23)
U17_gagaa(T71, T77, T72, pO_out_gaga(T72, X95, T77, T74)) → pD_out_gagaa(T71, T77, T72, X95, T74)
U21_gagaa(T122, T128, T123, pP_out_gaga(T123, X164, T128, T125)) → pE_out_gagaa(T122, T128, T123, X164, T125)
pN_in_gaga(T21, T26) → U14_gaga(T21, T26, evaluateB_in_ga(T21))
pO_in_gaga(T72, T77) → U18_gaga(T72, T77, evaluateB_in_ga(T72))
pP_in_gaga(T123, T128) → U22_gaga(T123, T128, evaluateB_in_ga(T123))
U14_gaga(T21, T26, evaluateB_out_ga(T21, T31)) → U15_gaga(T21, T31, T26, addG_in_gga(T26, T31))
U18_gaga(T72, T77, evaluateB_out_ga(T72, T82)) → U19_gaga(T72, T82, T77, subH_in_gga(T77, T82))
U22_gaga(T123, T128, evaluateB_out_ga(T123, T133)) → U23_gaga(T123, T133, T128, multL_in_gga(T128, T133))
U15_gaga(T21, T31, T26, addG_out_gga(T26, T31, T23)) → pN_out_gaga(T21, T31, T26, T23)
U19_gaga(T72, T82, T77, subH_out_gga(T77, T82, T74)) → pO_out_gaga(T72, T82, T77, T74)
U23_gaga(T123, T133, T128, multL_out_gga(T128, T133, T125)) → pP_out_gaga(T123, T133, T128, T125)
addG_in_gga(s(T49), T50) → U6_gga(T49, T50, addG_in_gga(T49, T50))
addG_in_gga(0, T58) → addG_out_gga(0, T58, T58)
subH_in_gga(s(T100), s(T101)) → U7_gga(T100, T101, subH_in_gga(T100, T101))
subH_in_gga(T109, 0) → subH_out_gga(T109, 0, T109)
multL_in_gga(s(T151), T152) → U11_gga(T151, T152, pM_in_ggaa(T151, T152))
multL_in_gga(0, T200) → multL_out_gga(0, T200, 0)
U6_gga(T49, T50, addG_out_gga(T49, T50, T52)) → addG_out_gga(s(T49), T50, s(T52))
U7_gga(T100, T101, subH_out_gga(T100, T101, T103)) → subH_out_gga(s(T100), s(T101), T103)
U11_gga(T151, T152, pM_out_ggaa(T151, T152, X210, T154)) → multL_out_gga(s(T151), T152, T154)
pM_in_ggaa(T151, T152) → U24_ggaa(T151, T152, multI_in_gga(T151, T152))
U24_ggaa(T151, T152, multI_out_gga(T151, T152, T157)) → U25_ggaa(T151, T152, T157, addG_in_gga(T152, T157))
multI_in_gga(s(T168), T169) → U8_gga(T168, T169, pJ_in_ggaa(T168, T169))
multI_in_gga(0, T194) → multI_out_gga(0, T194, 0)
U25_ggaa(T151, T152, T157, addG_out_gga(T152, T157, T154)) → pM_out_ggaa(T151, T152, T157, T154)
U8_gga(T168, T169, pJ_out_ggaa(T168, T169, X242, X243)) → multI_out_gga(s(T168), T169, X243)
pJ_in_ggaa(T168, T169) → U26_ggaa(T168, T169, multI_in_gga(T168, T169))
U26_ggaa(T168, T169, multI_out_gga(T168, T169, T172)) → U27_ggaa(T168, T169, T172, addK_in_gga(T169, T172))
U27_ggaa(T168, T169, T172, addK_out_gga(T169, T172, X243)) → pJ_out_ggaa(T168, T169, T172, X243)
addK_in_gga(s(T185), T186) → U9_gga(T185, T186, addK_in_gga(T185, T186))
addK_in_gga(0, T191) → addK_out_gga(0, T191, T191)
U9_gga(T185, T186, addK_out_gga(T185, T186, X277)) → addK_out_gga(s(T185), T186, s(X277))

The set Q consists of the following terms:

evaluateB_in_ga(x0)
U2_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2)
U5_ga(x0, x1)
pC_in_gagaa(x0, x1)
pD_in_gagaa(x0, x1)
pE_in_gagaa(x0, x1)
myintegerF_in_g(x0)
U12_gagaa(x0, x1, x2)
U16_gagaa(x0, x1, x2)
U20_gagaa(x0, x1, x2)
U10_g(x0, x1)
U13_gagaa(x0, x1, x2, x3)
U17_gagaa(x0, x1, x2, x3)
U21_gagaa(x0, x1, x2, x3)
pN_in_gaga(x0, x1)
pO_in_gaga(x0, x1)
pP_in_gaga(x0, x1)
U14_gaga(x0, x1, x2)
U18_gaga(x0, x1, x2)
U22_gaga(x0, x1, x2)
U15_gaga(x0, x1, x2, x3)
U19_gaga(x0, x1, x2, x3)
U23_gaga(x0, x1, x2, x3)
addG_in_gga(x0, x1)
subH_in_gga(x0, x1)
multL_in_gga(x0, x1)
U6_gga(x0, x1, x2)
U7_gga(x0, x1, x2)
U11_gga(x0, x1, x2)
pM_in_ggaa(x0, x1)
U24_ggaa(x0, x1, x2)
multI_in_gga(x0, x1)
U25_ggaa(x0, x1, x2, x3)
U8_gga(x0, x1, x2)
pJ_in_ggaa(x0, x1)
U26_ggaa(x0, x1, x2)
U27_ggaa(x0, x1, x2, x3)
addK_in_gga(x0, x1)
U9_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(47) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PC_IN_GAGAA(T20, T21) → EVALUATEB_IN_GA(T20)
    The graph contains the following edges 1 >= 1

  • PC_IN_GAGAA(T20, T21) → U12_GAGAA(T20, T21, evaluateB_in_ga(T20))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U12_GAGAA(T20, T21, evaluateB_out_ga(T20, T26)) → PN_IN_GAGA(T21, T26)
    The graph contains the following edges 2 >= 1, 3 > 2

  • EVALUATEB_IN_GA(+(T20, T21)) → PC_IN_GAGAA(T20, T21)
    The graph contains the following edges 1 > 1, 1 > 2

  • PN_IN_GAGA(T21, T26) → EVALUATEB_IN_GA(T21)
    The graph contains the following edges 1 >= 1

  • PD_IN_GAGAA(T71, T72) → EVALUATEB_IN_GA(T71)
    The graph contains the following edges 1 >= 1

  • PD_IN_GAGAA(T71, T72) → U16_GAGAA(T71, T72, evaluateB_in_ga(T71))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • EVALUATEB_IN_GA(-(T71, T72)) → PD_IN_GAGAA(T71, T72)
    The graph contains the following edges 1 > 1, 1 > 2

  • EVALUATEB_IN_GA(*(T122, T123)) → PE_IN_GAGAA(T122, T123)
    The graph contains the following edges 1 > 1, 1 > 2

  • U16_GAGAA(T71, T72, evaluateB_out_ga(T71, T77)) → PO_IN_GAGA(T72, T77)
    The graph contains the following edges 2 >= 1, 3 > 2

  • PO_IN_GAGA(T72, T77) → EVALUATEB_IN_GA(T72)
    The graph contains the following edges 1 >= 1

  • PE_IN_GAGAA(T122, T123) → EVALUATEB_IN_GA(T122)
    The graph contains the following edges 1 >= 1

  • PP_IN_GAGA(T123, T128) → EVALUATEB_IN_GA(T123)
    The graph contains the following edges 1 >= 1

  • PE_IN_GAGAA(T122, T123) → U20_GAGAA(T122, T123, evaluateB_in_ga(T122))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U20_GAGAA(T122, T123, evaluateB_out_ga(T122, T128)) → PP_IN_GAGA(T123, T128)
    The graph contains the following edges 2 >= 1, 3 > 2

(48) YES