(0) Obligation:

Clauses:

div(X, s(Y), Z) :- div_s(X, Y, Z).
div_s(0, Y, 0).
div_s(s(X), Y, 0) :- lss(X, Y).
div_s(s(X), Y, s(Z)) :- ','(sub(X, Y, R), div_s(R, Y, Z)).
lss(s(X), s(Y)) :- lss(X, Y).
lss(0, s(Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).

Query: div(g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T7, s(T8), T10) → U1_GGA(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
DIVA_IN_GGA(T7, s(T8), T10) → DIV_SB_IN_GGA(T7, T8, T10)
DIV_SB_IN_GGA(s(T24), T25, 0) → U3_GGA(T24, T25, lssC_in_gg(T24, T25))
DIV_SB_IN_GGA(s(T24), T25, 0) → LSSC_IN_GG(T24, T25)
LSSC_IN_GG(s(T36), s(T37)) → U2_GG(T36, T37, lssC_in_gg(T36, T37))
LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → PD_IN_GGAA(T49, T50, X49, T52)
PD_IN_GGAA(T49, T50, T55, T52) → U6_GGAA(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
PD_IN_GGAA(T49, T50, T55, T52) → SUBE_IN_GGA(T49, T50, T55)
SUBE_IN_GGA(s(T66), s(T67), X77) → U5_GGA(T66, T67, X77, subE_in_gga(T66, T67, X77))
SUBE_IN_GGA(s(T66), s(T67), X77) → SUBE_IN_GGA(T66, T67, X77)
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_GGAA(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x2, x3)
LSSC_IN_GG(x1, x2)  =  LSSC_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x2, x3)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T7, s(T8), T10) → U1_GGA(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
DIVA_IN_GGA(T7, s(T8), T10) → DIV_SB_IN_GGA(T7, T8, T10)
DIV_SB_IN_GGA(s(T24), T25, 0) → U3_GGA(T24, T25, lssC_in_gg(T24, T25))
DIV_SB_IN_GGA(s(T24), T25, 0) → LSSC_IN_GG(T24, T25)
LSSC_IN_GG(s(T36), s(T37)) → U2_GG(T36, T37, lssC_in_gg(T36, T37))
LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → PD_IN_GGAA(T49, T50, X49, T52)
PD_IN_GGAA(T49, T50, T55, T52) → U6_GGAA(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
PD_IN_GGAA(T49, T50, T55, T52) → SUBE_IN_GGA(T49, T50, T55)
SUBE_IN_GGA(s(T66), s(T67), X77) → U5_GGA(T66, T67, X77, subE_in_gga(T66, T67, X77))
SUBE_IN_GGA(s(T66), s(T67), X77) → SUBE_IN_GGA(T66, T67, X77)
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_GGAA(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x2, x3)
LSSC_IN_GG(x1, x2)  =  LSSC_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x2, x3)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBE_IN_GGA(s(T66), s(T67), X77) → SUBE_IN_GGA(T66, T67, X77)

The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBE_IN_GGA(s(T66), s(T67), X77) → SUBE_IN_GGA(T66, T67, X77)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBE_IN_GGA(x1, x2, x3)  =  SUBE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBE_IN_GGA(s(T66), s(T67)) → SUBE_IN_GGA(T66, T67)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBE_IN_GGA(s(T66), s(T67)) → SUBE_IN_GGA(T66, T67)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)

The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
LSSC_IN_GG(x1, x2)  =  LSSC_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LSSC_IN_GG(s(T36), s(T37)) → LSSC_IN_GG(T36, T37)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50, s(T52)) → PD_IN_GGAA(T49, T50, X49, T52)
PD_IN_GGAA(T49, T50, T55, T52) → U6_GGAA(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divA_in_gga(T7, s(T8), T10) → U1_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U3_gga(T24, T25, lssC_in_gg(T24, T25))
lssC_in_gg(s(T36), s(T37)) → U2_gg(T36, T37, lssC_in_gg(T36, T37))
lssC_in_gg(0, s(T42)) → lssC_out_gg(0, s(T42))
U2_gg(T36, T37, lssC_out_gg(T36, T37)) → lssC_out_gg(s(T36), s(T37))
U3_gga(T24, T25, lssC_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, pD_in_ggaa(T49, T50, X49, T52))
pD_in_ggaa(T49, T50, T55, T52) → U6_ggaa(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)
U6_ggaa(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → U7_ggaa(T49, T50, T55, T52, div_sB_in_gga(T55, T50, T52))
U7_ggaa(T49, T50, T55, T52, div_sB_out_gga(T55, T50, T52)) → pD_out_ggaa(T49, T50, T55, T52)
U4_gga(T49, T50, T52, pD_out_ggaa(T49, T50, X49, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U1_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divA_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x2, x3)
lssC_in_gg(x1, x2)  =  lssC_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x2, x3)
lssC_out_gg(x1, x2)  =  lssC_out_gg(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U6_ggaa(x1, x2, x3, x4, x5)  =  U6_ggaa(x1, x2, x5)
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x3, x5)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50, s(T52)) → PD_IN_GGAA(T49, T50, X49, T52)
PD_IN_GGAA(T49, T50, T55, T52) → U6_GGAA(T49, T50, T55, T52, subE_in_gga(T49, T50, T55))
U6_GGAA(T49, T50, T55, T52, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

subE_in_gga(s(T66), s(T67), X77) → U5_gga(T66, T67, X77, subE_in_gga(T66, T67, X77))
subE_in_gga(T72, 0, T72) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, X77, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
subE_in_gga(x1, x2, x3)  =  subE_in_gga(x1, x2)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
subE_out_gga(x1, x2, x3)  =  subE_out_gga(x1, x2, x3)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U6_GGAA(x1, x2, x3, x4, x5)  =  U6_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50) → PD_IN_GGAA(T49, T50)
PD_IN_GGAA(T49, T50) → U6_GGAA(T49, T50, subE_in_gga(T49, T50))
U6_GGAA(T49, T50, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50)

The TRS R consists of the following rules:

subE_in_gga(s(T66), s(T67)) → U5_gga(T66, T67, subE_in_gga(T66, T67))
subE_in_gga(T72, 0) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)

The set Q consists of the following terms:

subE_in_gga(x0, x1)
U5_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PD_IN_GGAA(T49, T50) → U6_GGAA(T49, T50, subE_in_gga(T49, T50))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV_SB_IN_GGA(x1, x2)) = x1 + x2   
POL(PD_IN_GGAA(x1, x2)) = 1 + x1 + x2   
POL(U5_gga(x1, x2, x3)) = 1 + x3   
POL(U6_GGAA(x1, x2, x3)) = x3   
POL(s(x1)) = 1 + x1   
POL(subE_in_gga(x1, x2)) = x1   
POL(subE_out_gga(x1, x2, x3)) = x2 + x3   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

subE_in_gga(s(T66), s(T67)) → U5_gga(T66, T67, subE_in_gga(T66, T67))
subE_in_gga(T72, 0) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50) → PD_IN_GGAA(T49, T50)
U6_GGAA(T49, T50, subE_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50)

The TRS R consists of the following rules:

subE_in_gga(s(T66), s(T67)) → U5_gga(T66, T67, subE_in_gga(T66, T67))
subE_in_gga(T72, 0) → subE_out_gga(T72, 0, T72)
U5_gga(T66, T67, subE_out_gga(T66, T67, X77)) → subE_out_gga(s(T66), s(T67), X77)

The set Q consists of the following terms:

subE_in_gga(x0, x1)
U5_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(29) TRUE