(0) Obligation:

Clauses:

mult(0, Y, 0).
mult(s(X), Y, Z) :- ','(mult(X, Y, Z1), add(Z1, Y, Z)).
add(0, Y, Y).
add(s(X), Y, s(Z)) :- add(X, Y, Z).

Query: mult(g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MULTA_IN_GGA(s(s(T29)), T30, T12) → U1_GGA(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
MULTA_IN_GGA(s(s(T29)), T30, T12) → PB_IN_GGAAA(T29, T30, X40, X41, T12)
PB_IN_GGAAA(T29, T30, T33, X41, T12) → U5_GGAAA(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
PB_IN_GGAAA(T29, T30, T33, X41, T12) → MULTC_IN_GGA(T29, T30, T33)
MULTC_IN_GGA(s(T45), T46, X64) → U2_GGA(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
MULTC_IN_GGA(s(T45), T46, X64) → PD_IN_GGAA(T45, T46, X63, X64)
PD_IN_GGAA(T45, T46, T49, X64) → U9_GGAA(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
PD_IN_GGAA(T45, T46, T49, X64) → MULTC_IN_GGA(T45, T46, T49)
U9_GGAA(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_GGAA(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
U9_GGAA(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → ADDE_IN_GGA(T49, T46, X64)
ADDE_IN_GGA(s(T63), T64, s(X87)) → U3_GGA(T63, T64, X87, addE_in_gga(T63, T64, X87))
ADDE_IN_GGA(s(T63), T64, s(X87)) → ADDE_IN_GGA(T63, T64, X87)
U5_GGAAA(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_GGAAA(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
U5_GGAAA(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → PG_IN_GGAA(T33, T30, X41, T12)
PG_IN_GGAA(T33, T30, T69, T12) → U7_GGAA(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
PG_IN_GGAA(T33, T30, T69, T12) → ADDE_IN_GGA(T33, T30, T69)
U7_GGAA(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_GGAA(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
U7_GGAA(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → ADDF_IN_GGA(T69, T30, T12)
ADDF_IN_GGA(s(T85), T86, s(T88)) → U4_GGA(T85, T86, T88, addF_in_gga(T85, T86, T88))
ADDF_IN_GGA(s(T85), T86, s(T88)) → ADDF_IN_GGA(T85, T86, T88)

The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
MULTA_IN_GGA(x1, x2, x3)  =  MULTA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAAA(x1, x2, x3, x4, x5)  =  PB_IN_GGAAA(x1, x2)
U5_GGAAA(x1, x2, x3, x4, x5, x6)  =  U5_GGAAA(x1, x2, x6)
MULTC_IN_GGA(x1, x2, x3)  =  MULTC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x1, x2, x5)
U10_GGAA(x1, x2, x3, x4, x5)  =  U10_GGAA(x1, x2, x3, x5)
ADDE_IN_GGA(x1, x2, x3)  =  ADDE_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U6_GGAAA(x1, x2, x3, x4, x5, x6)  =  U6_GGAAA(x1, x2, x3, x6)
PG_IN_GGAA(x1, x2, x3, x4)  =  PG_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x1, x2, x3, x5)
ADDF_IN_GGA(x1, x2, x3)  =  ADDF_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTA_IN_GGA(s(s(T29)), T30, T12) → U1_GGA(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
MULTA_IN_GGA(s(s(T29)), T30, T12) → PB_IN_GGAAA(T29, T30, X40, X41, T12)
PB_IN_GGAAA(T29, T30, T33, X41, T12) → U5_GGAAA(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
PB_IN_GGAAA(T29, T30, T33, X41, T12) → MULTC_IN_GGA(T29, T30, T33)
MULTC_IN_GGA(s(T45), T46, X64) → U2_GGA(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
MULTC_IN_GGA(s(T45), T46, X64) → PD_IN_GGAA(T45, T46, X63, X64)
PD_IN_GGAA(T45, T46, T49, X64) → U9_GGAA(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
PD_IN_GGAA(T45, T46, T49, X64) → MULTC_IN_GGA(T45, T46, T49)
U9_GGAA(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_GGAA(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
U9_GGAA(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → ADDE_IN_GGA(T49, T46, X64)
ADDE_IN_GGA(s(T63), T64, s(X87)) → U3_GGA(T63, T64, X87, addE_in_gga(T63, T64, X87))
ADDE_IN_GGA(s(T63), T64, s(X87)) → ADDE_IN_GGA(T63, T64, X87)
U5_GGAAA(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_GGAAA(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
U5_GGAAA(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → PG_IN_GGAA(T33, T30, X41, T12)
PG_IN_GGAA(T33, T30, T69, T12) → U7_GGAA(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
PG_IN_GGAA(T33, T30, T69, T12) → ADDE_IN_GGA(T33, T30, T69)
U7_GGAA(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_GGAA(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
U7_GGAA(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → ADDF_IN_GGA(T69, T30, T12)
ADDF_IN_GGA(s(T85), T86, s(T88)) → U4_GGA(T85, T86, T88, addF_in_gga(T85, T86, T88))
ADDF_IN_GGA(s(T85), T86, s(T88)) → ADDF_IN_GGA(T85, T86, T88)

The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
MULTA_IN_GGA(x1, x2, x3)  =  MULTA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAAA(x1, x2, x3, x4, x5)  =  PB_IN_GGAAA(x1, x2)
U5_GGAAA(x1, x2, x3, x4, x5, x6)  =  U5_GGAAA(x1, x2, x6)
MULTC_IN_GGA(x1, x2, x3)  =  MULTC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x1, x2, x5)
U10_GGAA(x1, x2, x3, x4, x5)  =  U10_GGAA(x1, x2, x3, x5)
ADDE_IN_GGA(x1, x2, x3)  =  ADDE_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U6_GGAAA(x1, x2, x3, x4, x5, x6)  =  U6_GGAAA(x1, x2, x3, x6)
PG_IN_GGAA(x1, x2, x3, x4)  =  PG_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x1, x2, x3, x5)
ADDF_IN_GGA(x1, x2, x3)  =  ADDF_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 16 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDF_IN_GGA(s(T85), T86, s(T88)) → ADDF_IN_GGA(T85, T86, T88)

The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
ADDF_IN_GGA(x1, x2, x3)  =  ADDF_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDF_IN_GGA(s(T85), T86, s(T88)) → ADDF_IN_GGA(T85, T86, T88)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADDF_IN_GGA(x1, x2, x3)  =  ADDF_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADDF_IN_GGA(s(T85), T86) → ADDF_IN_GGA(T85, T86)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADDF_IN_GGA(s(T85), T86) → ADDF_IN_GGA(T85, T86)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDE_IN_GGA(s(T63), T64, s(X87)) → ADDE_IN_GGA(T63, T64, X87)

The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
ADDE_IN_GGA(x1, x2, x3)  =  ADDE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADDE_IN_GGA(s(T63), T64, s(X87)) → ADDE_IN_GGA(T63, T64, X87)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADDE_IN_GGA(x1, x2, x3)  =  ADDE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADDE_IN_GGA(s(T63), T64) → ADDE_IN_GGA(T63, T64)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADDE_IN_GGA(s(T63), T64) → ADDE_IN_GGA(T63, T64)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTC_IN_GGA(s(T45), T46, X64) → PD_IN_GGAA(T45, T46, X63, X64)
PD_IN_GGAA(T45, T46, T49, X64) → MULTC_IN_GGA(T45, T46, T49)

The TRS R consists of the following rules:

multA_in_gga(0, T5, 0) → multA_out_gga(0, T5, 0)
multA_in_gga(s(0), T24, T24) → multA_out_gga(s(0), T24, T24)
multA_in_gga(s(s(T29)), T30, T12) → U1_gga(T29, T30, T12, pB_in_ggaaa(T29, T30, X40, X41, T12))
pB_in_ggaaa(T29, T30, T33, X41, T12) → U5_ggaaa(T29, T30, T33, X41, T12, multC_in_gga(T29, T30, T33))
multC_in_gga(0, T40, 0) → multC_out_gga(0, T40, 0)
multC_in_gga(s(T45), T46, X64) → U2_gga(T45, T46, X64, pD_in_ggaa(T45, T46, X63, X64))
pD_in_ggaa(T45, T46, T49, X64) → U9_ggaa(T45, T46, T49, X64, multC_in_gga(T45, T46, T49))
U9_ggaa(T45, T46, T49, X64, multC_out_gga(T45, T46, T49)) → U10_ggaa(T45, T46, T49, X64, addE_in_gga(T49, T46, X64))
addE_in_gga(0, T58, T58) → addE_out_gga(0, T58, T58)
addE_in_gga(s(T63), T64, s(X87)) → U3_gga(T63, T64, X87, addE_in_gga(T63, T64, X87))
U3_gga(T63, T64, X87, addE_out_gga(T63, T64, X87)) → addE_out_gga(s(T63), T64, s(X87))
U10_ggaa(T45, T46, T49, X64, addE_out_gga(T49, T46, X64)) → pD_out_ggaa(T45, T46, T49, X64)
U2_gga(T45, T46, X64, pD_out_ggaa(T45, T46, X63, X64)) → multC_out_gga(s(T45), T46, X64)
U5_ggaaa(T29, T30, T33, X41, T12, multC_out_gga(T29, T30, T33)) → U6_ggaaa(T29, T30, T33, X41, T12, pG_in_ggaa(T33, T30, X41, T12))
pG_in_ggaa(T33, T30, T69, T12) → U7_ggaa(T33, T30, T69, T12, addE_in_gga(T33, T30, T69))
U7_ggaa(T33, T30, T69, T12, addE_out_gga(T33, T30, T69)) → U8_ggaa(T33, T30, T69, T12, addF_in_gga(T69, T30, T12))
addF_in_gga(0, T78, T78) → addF_out_gga(0, T78, T78)
addF_in_gga(s(T85), T86, s(T88)) → U4_gga(T85, T86, T88, addF_in_gga(T85, T86, T88))
U4_gga(T85, T86, T88, addF_out_gga(T85, T86, T88)) → addF_out_gga(s(T85), T86, s(T88))
U8_ggaa(T33, T30, T69, T12, addF_out_gga(T69, T30, T12)) → pG_out_ggaa(T33, T30, T69, T12)
U6_ggaaa(T29, T30, T33, X41, T12, pG_out_ggaa(T33, T30, X41, T12)) → pB_out_ggaaa(T29, T30, T33, X41, T12)
U1_gga(T29, T30, T12, pB_out_ggaaa(T29, T30, X40, X41, T12)) → multA_out_gga(s(s(T29)), T30, T12)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
multC_in_gga(x1, x2, x3)  =  multC_in_gga(x1, x2)
multC_out_gga(x1, x2, x3)  =  multC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pD_in_ggaa(x1, x2, x3, x4)  =  pD_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
addE_in_gga(x1, x2, x3)  =  addE_in_gga(x1, x2)
addE_out_gga(x1, x2, x3)  =  addE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
pD_out_ggaa(x1, x2, x3, x4)  =  pD_out_ggaa(x1, x2, x3, x4)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pG_in_ggaa(x1, x2, x3, x4)  =  pG_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
addF_in_gga(x1, x2, x3)  =  addF_in_gga(x1, x2)
addF_out_gga(x1, x2, x3)  =  addF_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pG_out_ggaa(x1, x2, x3, x4)  =  pG_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
MULTC_IN_GGA(x1, x2, x3)  =  MULTC_IN_GGA(x1, x2)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTC_IN_GGA(s(T45), T46, X64) → PD_IN_GGAA(T45, T46, X63, X64)
PD_IN_GGAA(T45, T46, T49, X64) → MULTC_IN_GGA(T45, T46, T49)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MULTC_IN_GGA(x1, x2, x3)  =  MULTC_IN_GGA(x1, x2)
PD_IN_GGAA(x1, x2, x3, x4)  =  PD_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULTC_IN_GGA(s(T45), T46) → PD_IN_GGAA(T45, T46)
PD_IN_GGAA(T45, T46) → MULTC_IN_GGA(T45, T46)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PD_IN_GGAA(T45, T46) → MULTC_IN_GGA(T45, T46)
    The graph contains the following edges 1 >= 1, 2 >= 2

  • MULTC_IN_GGA(s(T45), T46) → PD_IN_GGAA(T45, T46)
    The graph contains the following edges 1 > 1, 2 >= 2

(27) YES