(0) Obligation:

Clauses:

append([], L, L).
append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3).
append3(A, B, C, D) :- ','(append(A, B, E), append(E, C, D)).

Query: append3(g,g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

append3A_in_ggga([], T18, T11, T13) → U1_ggga(T18, T11, T13, appendB_in_gga(T18, T11, T13))
appendB_in_gga([], T25, T25) → appendB_out_gga([], T25, T25)
appendB_in_gga(.(T34, T35), T36, .(T34, T38)) → U3_gga(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
U3_gga(T34, T35, T36, T38, appendB_out_gga(T35, T36, T38)) → appendB_out_gga(.(T34, T35), T36, .(T34, T38))
U1_ggga(T18, T11, T13, appendB_out_gga(T18, T11, T13)) → append3A_out_ggga([], T18, T11, T13)
append3A_in_ggga(.(T47, T48), T49, T11, T13) → U2_ggga(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
pC_in_ggagga(T48, T49, T52, T47, T11, T13) → U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
appendD_in_gga([], T59, T59) → appendD_out_gga([], T59, T59)
appendD_in_gga(.(T66, T67), T68, .(T66, X74)) → U4_gga(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
U4_gga(T66, T67, T68, X74, appendD_out_gga(T67, T68, X74)) → appendD_out_gga(.(T66, T67), T68, .(T66, X74))
U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_out_gga(.(T47, T52), T11, T13)) → pC_out_ggagga(T48, T49, T52, T47, T11, T13)
U2_ggga(T47, T48, T49, T11, T13, pC_out_ggagga(T48, T49, X50, T47, T11, T13)) → append3A_out_ggga(.(T47, T48), T49, T11, T13)

The argument filtering Pi contains the following mapping:
append3A_in_ggga(x1, x2, x3, x4)  =  append3A_in_ggga(x1, x2, x3)
[]  =  []
U1_ggga(x1, x2, x3, x4)  =  U1_ggga(x1, x2, x4)
appendB_in_gga(x1, x2, x3)  =  appendB_in_gga(x1, x2)
appendB_out_gga(x1, x2, x3)  =  appendB_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
append3A_out_ggga(x1, x2, x3, x4)  =  append3A_out_ggga(x1, x2, x3, x4)
U2_ggga(x1, x2, x3, x4, x5, x6)  =  U2_ggga(x1, x2, x3, x4, x6)
pC_in_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_in_ggagga(x1, x2, x4, x5)
U5_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U5_ggagga(x1, x2, x4, x5, x7)
appendD_in_gga(x1, x2, x3)  =  appendD_in_gga(x1, x2)
appendD_out_gga(x1, x2, x3)  =  appendD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x3, x5)
U6_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U6_ggagga(x1, x2, x3, x4, x5, x7)
pC_out_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_out_ggagga(x1, x2, x3, x4, x5, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

APPEND3A_IN_GGGA([], T18, T11, T13) → U1_GGGA(T18, T11, T13, appendB_in_gga(T18, T11, T13))
APPEND3A_IN_GGGA([], T18, T11, T13) → APPENDB_IN_GGA(T18, T11, T13)
APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U3_GGA(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPENDB_IN_GGA(T35, T36, T38)
APPEND3A_IN_GGGA(.(T47, T48), T49, T11, T13) → U2_GGGA(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
APPEND3A_IN_GGGA(.(T47, T48), T49, T11, T13) → PC_IN_GGAGGA(T48, T49, X50, T47, T11, T13)
PC_IN_GGAGGA(T48, T49, T52, T47, T11, T13) → U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
PC_IN_GGAGGA(T48, T49, T52, T47, T11, T13) → APPENDD_IN_GGA(T48, T49, T52)
APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → U4_GGA(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPENDD_IN_GGA(T67, T68, X74)
U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_GGAGGA(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → APPENDB_IN_GGA(.(T47, T52), T11, T13)

The TRS R consists of the following rules:

append3A_in_ggga([], T18, T11, T13) → U1_ggga(T18, T11, T13, appendB_in_gga(T18, T11, T13))
appendB_in_gga([], T25, T25) → appendB_out_gga([], T25, T25)
appendB_in_gga(.(T34, T35), T36, .(T34, T38)) → U3_gga(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
U3_gga(T34, T35, T36, T38, appendB_out_gga(T35, T36, T38)) → appendB_out_gga(.(T34, T35), T36, .(T34, T38))
U1_ggga(T18, T11, T13, appendB_out_gga(T18, T11, T13)) → append3A_out_ggga([], T18, T11, T13)
append3A_in_ggga(.(T47, T48), T49, T11, T13) → U2_ggga(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
pC_in_ggagga(T48, T49, T52, T47, T11, T13) → U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
appendD_in_gga([], T59, T59) → appendD_out_gga([], T59, T59)
appendD_in_gga(.(T66, T67), T68, .(T66, X74)) → U4_gga(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
U4_gga(T66, T67, T68, X74, appendD_out_gga(T67, T68, X74)) → appendD_out_gga(.(T66, T67), T68, .(T66, X74))
U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_out_gga(.(T47, T52), T11, T13)) → pC_out_ggagga(T48, T49, T52, T47, T11, T13)
U2_ggga(T47, T48, T49, T11, T13, pC_out_ggagga(T48, T49, X50, T47, T11, T13)) → append3A_out_ggga(.(T47, T48), T49, T11, T13)

The argument filtering Pi contains the following mapping:
append3A_in_ggga(x1, x2, x3, x4)  =  append3A_in_ggga(x1, x2, x3)
[]  =  []
U1_ggga(x1, x2, x3, x4)  =  U1_ggga(x1, x2, x4)
appendB_in_gga(x1, x2, x3)  =  appendB_in_gga(x1, x2)
appendB_out_gga(x1, x2, x3)  =  appendB_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
append3A_out_ggga(x1, x2, x3, x4)  =  append3A_out_ggga(x1, x2, x3, x4)
U2_ggga(x1, x2, x3, x4, x5, x6)  =  U2_ggga(x1, x2, x3, x4, x6)
pC_in_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_in_ggagga(x1, x2, x4, x5)
U5_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U5_ggagga(x1, x2, x4, x5, x7)
appendD_in_gga(x1, x2, x3)  =  appendD_in_gga(x1, x2)
appendD_out_gga(x1, x2, x3)  =  appendD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x3, x5)
U6_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U6_ggagga(x1, x2, x3, x4, x5, x7)
pC_out_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_out_ggagga(x1, x2, x3, x4, x5, x6)
APPEND3A_IN_GGGA(x1, x2, x3, x4)  =  APPEND3A_IN_GGGA(x1, x2, x3)
U1_GGGA(x1, x2, x3, x4)  =  U1_GGGA(x1, x2, x4)
APPENDB_IN_GGA(x1, x2, x3)  =  APPENDB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U2_GGGA(x1, x2, x3, x4, x5, x6)  =  U2_GGGA(x1, x2, x3, x4, x6)
PC_IN_GGAGGA(x1, x2, x3, x4, x5, x6)  =  PC_IN_GGAGGA(x1, x2, x4, x5)
U5_GGAGGA(x1, x2, x3, x4, x5, x6, x7)  =  U5_GGAGGA(x1, x2, x4, x5, x7)
APPENDD_IN_GGA(x1, x2, x3)  =  APPENDD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x3, x5)
U6_GGAGGA(x1, x2, x3, x4, x5, x6, x7)  =  U6_GGAGGA(x1, x2, x3, x4, x5, x7)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND3A_IN_GGGA([], T18, T11, T13) → U1_GGGA(T18, T11, T13, appendB_in_gga(T18, T11, T13))
APPEND3A_IN_GGGA([], T18, T11, T13) → APPENDB_IN_GGA(T18, T11, T13)
APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U3_GGA(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPENDB_IN_GGA(T35, T36, T38)
APPEND3A_IN_GGGA(.(T47, T48), T49, T11, T13) → U2_GGGA(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
APPEND3A_IN_GGGA(.(T47, T48), T49, T11, T13) → PC_IN_GGAGGA(T48, T49, X50, T47, T11, T13)
PC_IN_GGAGGA(T48, T49, T52, T47, T11, T13) → U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
PC_IN_GGAGGA(T48, T49, T52, T47, T11, T13) → APPENDD_IN_GGA(T48, T49, T52)
APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → U4_GGA(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPENDD_IN_GGA(T67, T68, X74)
U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_GGAGGA(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U5_GGAGGA(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → APPENDB_IN_GGA(.(T47, T52), T11, T13)

The TRS R consists of the following rules:

append3A_in_ggga([], T18, T11, T13) → U1_ggga(T18, T11, T13, appendB_in_gga(T18, T11, T13))
appendB_in_gga([], T25, T25) → appendB_out_gga([], T25, T25)
appendB_in_gga(.(T34, T35), T36, .(T34, T38)) → U3_gga(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
U3_gga(T34, T35, T36, T38, appendB_out_gga(T35, T36, T38)) → appendB_out_gga(.(T34, T35), T36, .(T34, T38))
U1_ggga(T18, T11, T13, appendB_out_gga(T18, T11, T13)) → append3A_out_ggga([], T18, T11, T13)
append3A_in_ggga(.(T47, T48), T49, T11, T13) → U2_ggga(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
pC_in_ggagga(T48, T49, T52, T47, T11, T13) → U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
appendD_in_gga([], T59, T59) → appendD_out_gga([], T59, T59)
appendD_in_gga(.(T66, T67), T68, .(T66, X74)) → U4_gga(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
U4_gga(T66, T67, T68, X74, appendD_out_gga(T67, T68, X74)) → appendD_out_gga(.(T66, T67), T68, .(T66, X74))
U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_out_gga(.(T47, T52), T11, T13)) → pC_out_ggagga(T48, T49, T52, T47, T11, T13)
U2_ggga(T47, T48, T49, T11, T13, pC_out_ggagga(T48, T49, X50, T47, T11, T13)) → append3A_out_ggga(.(T47, T48), T49, T11, T13)

The argument filtering Pi contains the following mapping:
append3A_in_ggga(x1, x2, x3, x4)  =  append3A_in_ggga(x1, x2, x3)
[]  =  []
U1_ggga(x1, x2, x3, x4)  =  U1_ggga(x1, x2, x4)
appendB_in_gga(x1, x2, x3)  =  appendB_in_gga(x1, x2)
appendB_out_gga(x1, x2, x3)  =  appendB_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
append3A_out_ggga(x1, x2, x3, x4)  =  append3A_out_ggga(x1, x2, x3, x4)
U2_ggga(x1, x2, x3, x4, x5, x6)  =  U2_ggga(x1, x2, x3, x4, x6)
pC_in_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_in_ggagga(x1, x2, x4, x5)
U5_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U5_ggagga(x1, x2, x4, x5, x7)
appendD_in_gga(x1, x2, x3)  =  appendD_in_gga(x1, x2)
appendD_out_gga(x1, x2, x3)  =  appendD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x3, x5)
U6_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U6_ggagga(x1, x2, x3, x4, x5, x7)
pC_out_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_out_ggagga(x1, x2, x3, x4, x5, x6)
APPEND3A_IN_GGGA(x1, x2, x3, x4)  =  APPEND3A_IN_GGGA(x1, x2, x3)
U1_GGGA(x1, x2, x3, x4)  =  U1_GGGA(x1, x2, x4)
APPENDB_IN_GGA(x1, x2, x3)  =  APPENDB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U2_GGGA(x1, x2, x3, x4, x5, x6)  =  U2_GGGA(x1, x2, x3, x4, x6)
PC_IN_GGAGGA(x1, x2, x3, x4, x5, x6)  =  PC_IN_GGAGGA(x1, x2, x4, x5)
U5_GGAGGA(x1, x2, x3, x4, x5, x6, x7)  =  U5_GGAGGA(x1, x2, x4, x5, x7)
APPENDD_IN_GGA(x1, x2, x3)  =  APPENDD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x3, x5)
U6_GGAGGA(x1, x2, x3, x4, x5, x6, x7)  =  U6_GGAGGA(x1, x2, x3, x4, x5, x7)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPENDD_IN_GGA(T67, T68, X74)

The TRS R consists of the following rules:

append3A_in_ggga([], T18, T11, T13) → U1_ggga(T18, T11, T13, appendB_in_gga(T18, T11, T13))
appendB_in_gga([], T25, T25) → appendB_out_gga([], T25, T25)
appendB_in_gga(.(T34, T35), T36, .(T34, T38)) → U3_gga(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
U3_gga(T34, T35, T36, T38, appendB_out_gga(T35, T36, T38)) → appendB_out_gga(.(T34, T35), T36, .(T34, T38))
U1_ggga(T18, T11, T13, appendB_out_gga(T18, T11, T13)) → append3A_out_ggga([], T18, T11, T13)
append3A_in_ggga(.(T47, T48), T49, T11, T13) → U2_ggga(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
pC_in_ggagga(T48, T49, T52, T47, T11, T13) → U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
appendD_in_gga([], T59, T59) → appendD_out_gga([], T59, T59)
appendD_in_gga(.(T66, T67), T68, .(T66, X74)) → U4_gga(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
U4_gga(T66, T67, T68, X74, appendD_out_gga(T67, T68, X74)) → appendD_out_gga(.(T66, T67), T68, .(T66, X74))
U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_out_gga(.(T47, T52), T11, T13)) → pC_out_ggagga(T48, T49, T52, T47, T11, T13)
U2_ggga(T47, T48, T49, T11, T13, pC_out_ggagga(T48, T49, X50, T47, T11, T13)) → append3A_out_ggga(.(T47, T48), T49, T11, T13)

The argument filtering Pi contains the following mapping:
append3A_in_ggga(x1, x2, x3, x4)  =  append3A_in_ggga(x1, x2, x3)
[]  =  []
U1_ggga(x1, x2, x3, x4)  =  U1_ggga(x1, x2, x4)
appendB_in_gga(x1, x2, x3)  =  appendB_in_gga(x1, x2)
appendB_out_gga(x1, x2, x3)  =  appendB_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
append3A_out_ggga(x1, x2, x3, x4)  =  append3A_out_ggga(x1, x2, x3, x4)
U2_ggga(x1, x2, x3, x4, x5, x6)  =  U2_ggga(x1, x2, x3, x4, x6)
pC_in_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_in_ggagga(x1, x2, x4, x5)
U5_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U5_ggagga(x1, x2, x4, x5, x7)
appendD_in_gga(x1, x2, x3)  =  appendD_in_gga(x1, x2)
appendD_out_gga(x1, x2, x3)  =  appendD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x3, x5)
U6_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U6_ggagga(x1, x2, x3, x4, x5, x7)
pC_out_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_out_ggagga(x1, x2, x3, x4, x5, x6)
APPENDD_IN_GGA(x1, x2, x3)  =  APPENDD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPENDD_IN_GGA(T67, T68, X74)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDD_IN_GGA(x1, x2, x3)  =  APPENDD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GGA(.(T66, T67), T68) → APPENDD_IN_GGA(T67, T68)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDD_IN_GGA(.(T66, T67), T68) → APPENDD_IN_GGA(T67, T68)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPENDB_IN_GGA(T35, T36, T38)

The TRS R consists of the following rules:

append3A_in_ggga([], T18, T11, T13) → U1_ggga(T18, T11, T13, appendB_in_gga(T18, T11, T13))
appendB_in_gga([], T25, T25) → appendB_out_gga([], T25, T25)
appendB_in_gga(.(T34, T35), T36, .(T34, T38)) → U3_gga(T34, T35, T36, T38, appendB_in_gga(T35, T36, T38))
U3_gga(T34, T35, T36, T38, appendB_out_gga(T35, T36, T38)) → appendB_out_gga(.(T34, T35), T36, .(T34, T38))
U1_ggga(T18, T11, T13, appendB_out_gga(T18, T11, T13)) → append3A_out_ggga([], T18, T11, T13)
append3A_in_ggga(.(T47, T48), T49, T11, T13) → U2_ggga(T47, T48, T49, T11, T13, pC_in_ggagga(T48, T49, X50, T47, T11, T13))
pC_in_ggagga(T48, T49, T52, T47, T11, T13) → U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_in_gga(T48, T49, T52))
appendD_in_gga([], T59, T59) → appendD_out_gga([], T59, T59)
appendD_in_gga(.(T66, T67), T68, .(T66, X74)) → U4_gga(T66, T67, T68, X74, appendD_in_gga(T67, T68, X74))
U4_gga(T66, T67, T68, X74, appendD_out_gga(T67, T68, X74)) → appendD_out_gga(.(T66, T67), T68, .(T66, X74))
U5_ggagga(T48, T49, T52, T47, T11, T13, appendD_out_gga(T48, T49, T52)) → U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_in_gga(.(T47, T52), T11, T13))
U6_ggagga(T48, T49, T52, T47, T11, T13, appendB_out_gga(.(T47, T52), T11, T13)) → pC_out_ggagga(T48, T49, T52, T47, T11, T13)
U2_ggga(T47, T48, T49, T11, T13, pC_out_ggagga(T48, T49, X50, T47, T11, T13)) → append3A_out_ggga(.(T47, T48), T49, T11, T13)

The argument filtering Pi contains the following mapping:
append3A_in_ggga(x1, x2, x3, x4)  =  append3A_in_ggga(x1, x2, x3)
[]  =  []
U1_ggga(x1, x2, x3, x4)  =  U1_ggga(x1, x2, x4)
appendB_in_gga(x1, x2, x3)  =  appendB_in_gga(x1, x2)
appendB_out_gga(x1, x2, x3)  =  appendB_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
append3A_out_ggga(x1, x2, x3, x4)  =  append3A_out_ggga(x1, x2, x3, x4)
U2_ggga(x1, x2, x3, x4, x5, x6)  =  U2_ggga(x1, x2, x3, x4, x6)
pC_in_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_in_ggagga(x1, x2, x4, x5)
U5_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U5_ggagga(x1, x2, x4, x5, x7)
appendD_in_gga(x1, x2, x3)  =  appendD_in_gga(x1, x2)
appendD_out_gga(x1, x2, x3)  =  appendD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x3, x5)
U6_ggagga(x1, x2, x3, x4, x5, x6, x7)  =  U6_ggagga(x1, x2, x3, x4, x5, x7)
pC_out_ggagga(x1, x2, x3, x4, x5, x6)  =  pC_out_ggagga(x1, x2, x3, x4, x5, x6)
APPENDB_IN_GGA(x1, x2, x3)  =  APPENDB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPENDB_IN_GGA(T35, T36, T38)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDB_IN_GGA(x1, x2, x3)  =  APPENDB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GGA(.(T34, T35), T36) → APPENDB_IN_GGA(T35, T36)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDB_IN_GGA(.(T34, T35), T36) → APPENDB_IN_GGA(T35, T36)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES