(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Query: sublist(a,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistA_in_ag([], T16) → sublistA_out_ag([], T16)
sublistA_in_ag(T7, .(T29, T30)) → U1_ag(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
pB_in_aagaag(T38, T39, T30, X9, T7, T29) → U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
appendC_in_aag([], T45, T45) → appendC_out_aag([], T45, T45)
appendC_in_aag(.(T50, X93), X94, .(T50, T51)) → U2_aag(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
U2_aag(T50, X93, X94, T51, appendC_out_aag(X93, X94, T51)) → appendC_out_aag(.(T50, X93), X94, .(T50, T51))
U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
appendE_in_aagg([], .(T72, T73), T72, T73) → appendE_out_aagg([], .(T72, T73), T72, T73)
appendE_in_aagg(.(T84, X123), T86, T84, T85) → U4_aagg(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
appendD_in_aag([], T93, T93) → appendD_out_aag([], T93, T93)
appendD_in_aag(.(T101, X148), T103, .(T101, T102)) → U3_aag(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
U3_aag(T101, X148, T103, T102, appendD_out_aag(X148, T103, T102)) → appendD_out_aag(.(T101, X148), T103, .(T101, T102))
U4_aagg(T84, X123, T86, T85, appendD_out_aag(X123, T86, T85)) → appendE_out_aagg(.(T84, X123), T86, T84, T85)
U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_out_aagg(X9, T7, T29, T38)) → pB_out_aagaag(T38, T39, T30, X9, T7, T29)
U1_ag(T7, T29, T30, pB_out_aagaag(X56, X57, T30, X9, T7, T29)) → sublistA_out_ag(T7, .(T29, T30))

The argument filtering Pi contains the following mapping:
sublistA_in_ag(x1, x2)  =  sublistA_in_ag(x2)
sublistA_out_ag(x1, x2)  =  sublistA_out_ag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ag(x1, x2, x3, x4)  =  U1_ag(x2, x3, x4)
pB_in_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_in_aagaag(x3, x6)
U5_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagaag(x3, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagaag(x1, x2, x3, x6, x7)
appendE_in_aagg(x1, x2, x3, x4)  =  appendE_in_aagg(x3, x4)
appendE_out_aagg(x1, x2, x3, x4)  =  appendE_out_aagg(x1, x2, x3, x4)
U4_aagg(x1, x2, x3, x4, x5)  =  U4_aagg(x1, x4, x5)
appendD_in_aag(x1, x2, x3)  =  appendD_in_aag(x3)
appendD_out_aag(x1, x2, x3)  =  appendD_out_aag(x1, x2, x3)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
pB_out_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_out_aagaag(x1, x2, x3, x4, x5, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLISTA_IN_AG(T7, .(T29, T30)) → U1_AG(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
SUBLISTA_IN_AG(T7, .(T29, T30)) → PB_IN_AAGAAG(X56, X57, T30, X9, T7, T29)
PB_IN_AAGAAG(T38, T39, T30, X9, T7, T29) → U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
PB_IN_AAGAAG(T38, T39, T30, X9, T7, T29) → APPENDC_IN_AAG(T38, T39, T30)
APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → U2_AAG(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDC_IN_AAG(X93, X94, T51)
U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_AAGAAG(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → APPENDE_IN_AAGG(X9, T7, T29, T38)
APPENDE_IN_AAGG(.(T84, X123), T86, T84, T85) → U4_AAGG(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
APPENDE_IN_AAGG(.(T84, X123), T86, T84, T85) → APPENDD_IN_AAG(X123, T86, T85)
APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → U3_AAG(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDD_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistA_in_ag([], T16) → sublistA_out_ag([], T16)
sublistA_in_ag(T7, .(T29, T30)) → U1_ag(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
pB_in_aagaag(T38, T39, T30, X9, T7, T29) → U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
appendC_in_aag([], T45, T45) → appendC_out_aag([], T45, T45)
appendC_in_aag(.(T50, X93), X94, .(T50, T51)) → U2_aag(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
U2_aag(T50, X93, X94, T51, appendC_out_aag(X93, X94, T51)) → appendC_out_aag(.(T50, X93), X94, .(T50, T51))
U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
appendE_in_aagg([], .(T72, T73), T72, T73) → appendE_out_aagg([], .(T72, T73), T72, T73)
appendE_in_aagg(.(T84, X123), T86, T84, T85) → U4_aagg(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
appendD_in_aag([], T93, T93) → appendD_out_aag([], T93, T93)
appendD_in_aag(.(T101, X148), T103, .(T101, T102)) → U3_aag(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
U3_aag(T101, X148, T103, T102, appendD_out_aag(X148, T103, T102)) → appendD_out_aag(.(T101, X148), T103, .(T101, T102))
U4_aagg(T84, X123, T86, T85, appendD_out_aag(X123, T86, T85)) → appendE_out_aagg(.(T84, X123), T86, T84, T85)
U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_out_aagg(X9, T7, T29, T38)) → pB_out_aagaag(T38, T39, T30, X9, T7, T29)
U1_ag(T7, T29, T30, pB_out_aagaag(X56, X57, T30, X9, T7, T29)) → sublistA_out_ag(T7, .(T29, T30))

The argument filtering Pi contains the following mapping:
sublistA_in_ag(x1, x2)  =  sublistA_in_ag(x2)
sublistA_out_ag(x1, x2)  =  sublistA_out_ag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ag(x1, x2, x3, x4)  =  U1_ag(x2, x3, x4)
pB_in_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_in_aagaag(x3, x6)
U5_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagaag(x3, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagaag(x1, x2, x3, x6, x7)
appendE_in_aagg(x1, x2, x3, x4)  =  appendE_in_aagg(x3, x4)
appendE_out_aagg(x1, x2, x3, x4)  =  appendE_out_aagg(x1, x2, x3, x4)
U4_aagg(x1, x2, x3, x4, x5)  =  U4_aagg(x1, x4, x5)
appendD_in_aag(x1, x2, x3)  =  appendD_in_aag(x3)
appendD_out_aag(x1, x2, x3)  =  appendD_out_aag(x1, x2, x3)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
pB_out_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_out_aagaag(x1, x2, x3, x4, x5, x6)
SUBLISTA_IN_AG(x1, x2)  =  SUBLISTA_IN_AG(x2)
U1_AG(x1, x2, x3, x4)  =  U1_AG(x2, x3, x4)
PB_IN_AAGAAG(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAGAAG(x3, x6)
U5_AAGAAG(x1, x2, x3, x4, x5, x6, x7)  =  U5_AAGAAG(x3, x6, x7)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x4, x5)
U6_AAGAAG(x1, x2, x3, x4, x5, x6, x7)  =  U6_AAGAAG(x1, x2, x3, x6, x7)
APPENDE_IN_AAGG(x1, x2, x3, x4)  =  APPENDE_IN_AAGG(x3, x4)
U4_AAGG(x1, x2, x3, x4, x5)  =  U4_AAGG(x1, x4, x5)
APPENDD_IN_AAG(x1, x2, x3)  =  APPENDD_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x4, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBLISTA_IN_AG(T7, .(T29, T30)) → U1_AG(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
SUBLISTA_IN_AG(T7, .(T29, T30)) → PB_IN_AAGAAG(X56, X57, T30, X9, T7, T29)
PB_IN_AAGAAG(T38, T39, T30, X9, T7, T29) → U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
PB_IN_AAGAAG(T38, T39, T30, X9, T7, T29) → APPENDC_IN_AAG(T38, T39, T30)
APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → U2_AAG(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDC_IN_AAG(X93, X94, T51)
U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_AAGAAG(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
U5_AAGAAG(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → APPENDE_IN_AAGG(X9, T7, T29, T38)
APPENDE_IN_AAGG(.(T84, X123), T86, T84, T85) → U4_AAGG(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
APPENDE_IN_AAGG(.(T84, X123), T86, T84, T85) → APPENDD_IN_AAG(X123, T86, T85)
APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → U3_AAG(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDD_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistA_in_ag([], T16) → sublistA_out_ag([], T16)
sublistA_in_ag(T7, .(T29, T30)) → U1_ag(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
pB_in_aagaag(T38, T39, T30, X9, T7, T29) → U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
appendC_in_aag([], T45, T45) → appendC_out_aag([], T45, T45)
appendC_in_aag(.(T50, X93), X94, .(T50, T51)) → U2_aag(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
U2_aag(T50, X93, X94, T51, appendC_out_aag(X93, X94, T51)) → appendC_out_aag(.(T50, X93), X94, .(T50, T51))
U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
appendE_in_aagg([], .(T72, T73), T72, T73) → appendE_out_aagg([], .(T72, T73), T72, T73)
appendE_in_aagg(.(T84, X123), T86, T84, T85) → U4_aagg(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
appendD_in_aag([], T93, T93) → appendD_out_aag([], T93, T93)
appendD_in_aag(.(T101, X148), T103, .(T101, T102)) → U3_aag(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
U3_aag(T101, X148, T103, T102, appendD_out_aag(X148, T103, T102)) → appendD_out_aag(.(T101, X148), T103, .(T101, T102))
U4_aagg(T84, X123, T86, T85, appendD_out_aag(X123, T86, T85)) → appendE_out_aagg(.(T84, X123), T86, T84, T85)
U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_out_aagg(X9, T7, T29, T38)) → pB_out_aagaag(T38, T39, T30, X9, T7, T29)
U1_ag(T7, T29, T30, pB_out_aagaag(X56, X57, T30, X9, T7, T29)) → sublistA_out_ag(T7, .(T29, T30))

The argument filtering Pi contains the following mapping:
sublistA_in_ag(x1, x2)  =  sublistA_in_ag(x2)
sublistA_out_ag(x1, x2)  =  sublistA_out_ag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ag(x1, x2, x3, x4)  =  U1_ag(x2, x3, x4)
pB_in_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_in_aagaag(x3, x6)
U5_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagaag(x3, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagaag(x1, x2, x3, x6, x7)
appendE_in_aagg(x1, x2, x3, x4)  =  appendE_in_aagg(x3, x4)
appendE_out_aagg(x1, x2, x3, x4)  =  appendE_out_aagg(x1, x2, x3, x4)
U4_aagg(x1, x2, x3, x4, x5)  =  U4_aagg(x1, x4, x5)
appendD_in_aag(x1, x2, x3)  =  appendD_in_aag(x3)
appendD_out_aag(x1, x2, x3)  =  appendD_out_aag(x1, x2, x3)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
pB_out_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_out_aagaag(x1, x2, x3, x4, x5, x6)
SUBLISTA_IN_AG(x1, x2)  =  SUBLISTA_IN_AG(x2)
U1_AG(x1, x2, x3, x4)  =  U1_AG(x2, x3, x4)
PB_IN_AAGAAG(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAGAAG(x3, x6)
U5_AAGAAG(x1, x2, x3, x4, x5, x6, x7)  =  U5_AAGAAG(x3, x6, x7)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x4, x5)
U6_AAGAAG(x1, x2, x3, x4, x5, x6, x7)  =  U6_AAGAAG(x1, x2, x3, x6, x7)
APPENDE_IN_AAGG(x1, x2, x3, x4)  =  APPENDE_IN_AAGG(x3, x4)
U4_AAGG(x1, x2, x3, x4, x5)  =  U4_AAGG(x1, x4, x5)
APPENDD_IN_AAG(x1, x2, x3)  =  APPENDD_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x4, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDD_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistA_in_ag([], T16) → sublistA_out_ag([], T16)
sublistA_in_ag(T7, .(T29, T30)) → U1_ag(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
pB_in_aagaag(T38, T39, T30, X9, T7, T29) → U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
appendC_in_aag([], T45, T45) → appendC_out_aag([], T45, T45)
appendC_in_aag(.(T50, X93), X94, .(T50, T51)) → U2_aag(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
U2_aag(T50, X93, X94, T51, appendC_out_aag(X93, X94, T51)) → appendC_out_aag(.(T50, X93), X94, .(T50, T51))
U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
appendE_in_aagg([], .(T72, T73), T72, T73) → appendE_out_aagg([], .(T72, T73), T72, T73)
appendE_in_aagg(.(T84, X123), T86, T84, T85) → U4_aagg(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
appendD_in_aag([], T93, T93) → appendD_out_aag([], T93, T93)
appendD_in_aag(.(T101, X148), T103, .(T101, T102)) → U3_aag(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
U3_aag(T101, X148, T103, T102, appendD_out_aag(X148, T103, T102)) → appendD_out_aag(.(T101, X148), T103, .(T101, T102))
U4_aagg(T84, X123, T86, T85, appendD_out_aag(X123, T86, T85)) → appendE_out_aagg(.(T84, X123), T86, T84, T85)
U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_out_aagg(X9, T7, T29, T38)) → pB_out_aagaag(T38, T39, T30, X9, T7, T29)
U1_ag(T7, T29, T30, pB_out_aagaag(X56, X57, T30, X9, T7, T29)) → sublistA_out_ag(T7, .(T29, T30))

The argument filtering Pi contains the following mapping:
sublistA_in_ag(x1, x2)  =  sublistA_in_ag(x2)
sublistA_out_ag(x1, x2)  =  sublistA_out_ag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ag(x1, x2, x3, x4)  =  U1_ag(x2, x3, x4)
pB_in_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_in_aagaag(x3, x6)
U5_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagaag(x3, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagaag(x1, x2, x3, x6, x7)
appendE_in_aagg(x1, x2, x3, x4)  =  appendE_in_aagg(x3, x4)
appendE_out_aagg(x1, x2, x3, x4)  =  appendE_out_aagg(x1, x2, x3, x4)
U4_aagg(x1, x2, x3, x4, x5)  =  U4_aagg(x1, x4, x5)
appendD_in_aag(x1, x2, x3)  =  appendD_in_aag(x3)
appendD_out_aag(x1, x2, x3)  =  appendD_out_aag(x1, x2, x3)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
pB_out_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_out_aagaag(x1, x2, x3, x4, x5, x6)
APPENDD_IN_AAG(x1, x2, x3)  =  APPENDD_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDD_IN_AAG(X148, T103, T102)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDD_IN_AAG(x1, x2, x3)  =  APPENDD_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDD_IN_AAG(.(T101, T102)) → APPENDD_IN_AAG(T102)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDD_IN_AAG(.(T101, T102)) → APPENDD_IN_AAG(T102)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDC_IN_AAG(X93, X94, T51)

The TRS R consists of the following rules:

sublistA_in_ag([], T16) → sublistA_out_ag([], T16)
sublistA_in_ag(T7, .(T29, T30)) → U1_ag(T7, T29, T30, pB_in_aagaag(X56, X57, T30, X9, T7, T29))
pB_in_aagaag(T38, T39, T30, X9, T7, T29) → U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_in_aag(T38, T39, T30))
appendC_in_aag([], T45, T45) → appendC_out_aag([], T45, T45)
appendC_in_aag(.(T50, X93), X94, .(T50, T51)) → U2_aag(T50, X93, X94, T51, appendC_in_aag(X93, X94, T51))
U2_aag(T50, X93, X94, T51, appendC_out_aag(X93, X94, T51)) → appendC_out_aag(.(T50, X93), X94, .(T50, T51))
U5_aagaag(T38, T39, T30, X9, T7, T29, appendC_out_aag(T38, T39, T30)) → U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_in_aagg(X9, T7, T29, T38))
appendE_in_aagg([], .(T72, T73), T72, T73) → appendE_out_aagg([], .(T72, T73), T72, T73)
appendE_in_aagg(.(T84, X123), T86, T84, T85) → U4_aagg(T84, X123, T86, T85, appendD_in_aag(X123, T86, T85))
appendD_in_aag([], T93, T93) → appendD_out_aag([], T93, T93)
appendD_in_aag(.(T101, X148), T103, .(T101, T102)) → U3_aag(T101, X148, T103, T102, appendD_in_aag(X148, T103, T102))
U3_aag(T101, X148, T103, T102, appendD_out_aag(X148, T103, T102)) → appendD_out_aag(.(T101, X148), T103, .(T101, T102))
U4_aagg(T84, X123, T86, T85, appendD_out_aag(X123, T86, T85)) → appendE_out_aagg(.(T84, X123), T86, T84, T85)
U6_aagaag(T38, T39, T30, X9, T7, T29, appendE_out_aagg(X9, T7, T29, T38)) → pB_out_aagaag(T38, T39, T30, X9, T7, T29)
U1_ag(T7, T29, T30, pB_out_aagaag(X56, X57, T30, X9, T7, T29)) → sublistA_out_ag(T7, .(T29, T30))

The argument filtering Pi contains the following mapping:
sublistA_in_ag(x1, x2)  =  sublistA_in_ag(x2)
sublistA_out_ag(x1, x2)  =  sublistA_out_ag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ag(x1, x2, x3, x4)  =  U1_ag(x2, x3, x4)
pB_in_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_in_aagaag(x3, x6)
U5_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U5_aagaag(x3, x6, x7)
appendC_in_aag(x1, x2, x3)  =  appendC_in_aag(x3)
appendC_out_aag(x1, x2, x3)  =  appendC_out_aag(x1, x2, x3)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x4, x5)
U6_aagaag(x1, x2, x3, x4, x5, x6, x7)  =  U6_aagaag(x1, x2, x3, x6, x7)
appendE_in_aagg(x1, x2, x3, x4)  =  appendE_in_aagg(x3, x4)
appendE_out_aagg(x1, x2, x3, x4)  =  appendE_out_aagg(x1, x2, x3, x4)
U4_aagg(x1, x2, x3, x4, x5)  =  U4_aagg(x1, x4, x5)
appendD_in_aag(x1, x2, x3)  =  appendD_in_aag(x3)
appendD_out_aag(x1, x2, x3)  =  appendD_out_aag(x1, x2, x3)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
pB_out_aagaag(x1, x2, x3, x4, x5, x6)  =  pB_out_aagaag(x1, x2, x3, x4, x5, x6)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDC_IN_AAG(X93, X94, T51)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDC_IN_AAG(x1, x2, x3)  =  APPENDC_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDC_IN_AAG(.(T50, T51)) → APPENDC_IN_AAG(T51)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDC_IN_AAG(.(T50, T51)) → APPENDC_IN_AAG(T51)
    The graph contains the following edges 1 > 1

(20) YES