(0) Obligation:

Clauses:

p(0).
p(s(X)) :- ','(geq(X, Y), p(Y)).
geq(X, X).
geq(s(X), Y) :- geq(X, Y).

Query: p(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pA_in_g(0) → pA_out_g(0)
pA_in_g(s(T3)) → U1_g(T3, pB_in_ga(T3, X4))
pB_in_ga(T8, T8) → U2_ga(T8, pA_in_g(T8))
U2_ga(T8, pA_out_g(T8)) → pB_out_ga(T8, T8)
pB_in_ga(s(T11), X18) → U3_ga(T11, X18, pB_in_ga(T11, X18))
U3_ga(T11, X18, pB_out_ga(T11, X18)) → pB_out_ga(s(T11), X18)
U1_g(T3, pB_out_ga(T3, X4)) → pA_out_g(s(T3))

The argument filtering Pi contains the following mapping:
pA_in_g(x1)  =  pA_in_g(x1)
0  =  0
pA_out_g(x1)  =  pA_out_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
U2_ga(x1, x2)  =  U2_ga(x1, x2)
pB_out_ga(x1, x2)  =  pB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PA_IN_G(s(T3)) → U1_G(T3, pB_in_ga(T3, X4))
PA_IN_G(s(T3)) → PB_IN_GA(T3, X4)
PB_IN_GA(T8, T8) → U2_GA(T8, pA_in_g(T8))
PB_IN_GA(T8, T8) → PA_IN_G(T8)
PB_IN_GA(s(T11), X18) → U3_GA(T11, X18, pB_in_ga(T11, X18))
PB_IN_GA(s(T11), X18) → PB_IN_GA(T11, X18)

The TRS R consists of the following rules:

pA_in_g(0) → pA_out_g(0)
pA_in_g(s(T3)) → U1_g(T3, pB_in_ga(T3, X4))
pB_in_ga(T8, T8) → U2_ga(T8, pA_in_g(T8))
U2_ga(T8, pA_out_g(T8)) → pB_out_ga(T8, T8)
pB_in_ga(s(T11), X18) → U3_ga(T11, X18, pB_in_ga(T11, X18))
U3_ga(T11, X18, pB_out_ga(T11, X18)) → pB_out_ga(s(T11), X18)
U1_g(T3, pB_out_ga(T3, X4)) → pA_out_g(s(T3))

The argument filtering Pi contains the following mapping:
pA_in_g(x1)  =  pA_in_g(x1)
0  =  0
pA_out_g(x1)  =  pA_out_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
U2_ga(x1, x2)  =  U2_ga(x1, x2)
pB_out_ga(x1, x2)  =  pB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
PA_IN_G(x1)  =  PA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)
U2_GA(x1, x2)  =  U2_GA(x1, x2)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_G(s(T3)) → U1_G(T3, pB_in_ga(T3, X4))
PA_IN_G(s(T3)) → PB_IN_GA(T3, X4)
PB_IN_GA(T8, T8) → U2_GA(T8, pA_in_g(T8))
PB_IN_GA(T8, T8) → PA_IN_G(T8)
PB_IN_GA(s(T11), X18) → U3_GA(T11, X18, pB_in_ga(T11, X18))
PB_IN_GA(s(T11), X18) → PB_IN_GA(T11, X18)

The TRS R consists of the following rules:

pA_in_g(0) → pA_out_g(0)
pA_in_g(s(T3)) → U1_g(T3, pB_in_ga(T3, X4))
pB_in_ga(T8, T8) → U2_ga(T8, pA_in_g(T8))
U2_ga(T8, pA_out_g(T8)) → pB_out_ga(T8, T8)
pB_in_ga(s(T11), X18) → U3_ga(T11, X18, pB_in_ga(T11, X18))
U3_ga(T11, X18, pB_out_ga(T11, X18)) → pB_out_ga(s(T11), X18)
U1_g(T3, pB_out_ga(T3, X4)) → pA_out_g(s(T3))

The argument filtering Pi contains the following mapping:
pA_in_g(x1)  =  pA_in_g(x1)
0  =  0
pA_out_g(x1)  =  pA_out_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
U2_ga(x1, x2)  =  U2_ga(x1, x2)
pB_out_ga(x1, x2)  =  pB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
PA_IN_G(x1)  =  PA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)
U2_GA(x1, x2)  =  U2_GA(x1, x2)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_G(s(T3)) → PB_IN_GA(T3, X4)
PB_IN_GA(T8, T8) → PA_IN_G(T8)
PB_IN_GA(s(T11), X18) → PB_IN_GA(T11, X18)

The TRS R consists of the following rules:

pA_in_g(0) → pA_out_g(0)
pA_in_g(s(T3)) → U1_g(T3, pB_in_ga(T3, X4))
pB_in_ga(T8, T8) → U2_ga(T8, pA_in_g(T8))
U2_ga(T8, pA_out_g(T8)) → pB_out_ga(T8, T8)
pB_in_ga(s(T11), X18) → U3_ga(T11, X18, pB_in_ga(T11, X18))
U3_ga(T11, X18, pB_out_ga(T11, X18)) → pB_out_ga(s(T11), X18)
U1_g(T3, pB_out_ga(T3, X4)) → pA_out_g(s(T3))

The argument filtering Pi contains the following mapping:
pA_in_g(x1)  =  pA_in_g(x1)
0  =  0
pA_out_g(x1)  =  pA_out_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
U2_ga(x1, x2)  =  U2_ga(x1, x2)
pB_out_ga(x1, x2)  =  pB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
PA_IN_G(x1)  =  PA_IN_G(x1)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_G(s(T3)) → PB_IN_GA(T3, X4)
PB_IN_GA(T8, T8) → PA_IN_G(T8)
PB_IN_GA(s(T11), X18) → PB_IN_GA(T11, X18)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PA_IN_G(x1)  =  PA_IN_G(x1)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_G(s(T3)) → PB_IN_GA(T3)
PB_IN_GA(T8) → PA_IN_G(T8)
PB_IN_GA(s(T11)) → PB_IN_GA(T11)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PB_IN_GA(T8) → PA_IN_G(T8)
    The graph contains the following edges 1 >= 1

  • PB_IN_GA(s(T11)) → PB_IN_GA(T11)
    The graph contains the following edges 1 > 1

  • PA_IN_G(s(T3)) → PB_IN_GA(T3)
    The graph contains the following edges 1 > 1

(12) YES