(0) Obligation:

Clauses:

append(nil, XS, XS).
append(cons(X, XS), YS, cons(X, ZS)) :- append(XS, YS, ZS).
reverse(nil, nil).
reverse(cons(X, nil), cons(X, nil)).
reverse(cons(X, XS), YS) :- ','(reverse(XS, ZS), append(ZS, cons(X, nil), YS)).
shuffle(nil, nil).
shuffle(cons(X, XS), cons(X, YS)) :- ','(reverse(XS, ZS), shuffle(ZS, YS)).
query(XS) :- shuffle(cons(X, XS), YS).

Query: query(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

QUERYA_IN_G(T6) → U1_G(T6, pB_in_gaa(T6, X19, X21))
QUERYA_IN_G(T6) → PB_IN_GAA(T6, X19, X21)
PB_IN_GAA(T6, T7, X21) → U5_GAA(T6, T7, X21, reverseC_in_ga(T6, T7))
PB_IN_GAA(T6, T7, X21) → REVERSEC_IN_GA(T6, T7)
REVERSEC_IN_GA(cons(T17, T18), X40) → U2_GA(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
REVERSEC_IN_GA(cons(T17, T18), X40) → PD_IN_GAGA(T18, X39, T17, X40)
PD_IN_GAGA(T18, T19, T17, X40) → U7_GAGA(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
PD_IN_GAGA(T18, T19, T17, X40) → REVERSEC_IN_GA(T18, T19)
U7_GAGA(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_GAGA(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
U7_GAGA(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → APPENDE_IN_GGA(T19, T17, X40)
APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → U3_GGA(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → APPENDE_IN_GGA(T34, T35, X62)
U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_GAA(T6, T7, X21, shuffleF_in_ga(T7, X21))
U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7, X21)
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → U4_GA(T42, T43, X78, pB_in_gaa(T43, X77, X78))
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → PB_IN_GAA(T43, X77, X78)

The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)
QUERYA_IN_G(x1)  =  QUERYA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
REVERSEC_IN_GA(x1, x2)  =  REVERSEC_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
PD_IN_GAGA(x1, x2, x3, x4)  =  PD_IN_GAGA(x1, x3)
U7_GAGA(x1, x2, x3, x4, x5)  =  U7_GAGA(x1, x3, x5)
U8_GAGA(x1, x2, x3, x4, x5)  =  U8_GAGA(x1, x2, x3, x5)
APPENDE_IN_GGA(x1, x2, x3)  =  APPENDE_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x2, x4)
SHUFFLEF_IN_GA(x1, x2)  =  SHUFFLEF_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

QUERYA_IN_G(T6) → U1_G(T6, pB_in_gaa(T6, X19, X21))
QUERYA_IN_G(T6) → PB_IN_GAA(T6, X19, X21)
PB_IN_GAA(T6, T7, X21) → U5_GAA(T6, T7, X21, reverseC_in_ga(T6, T7))
PB_IN_GAA(T6, T7, X21) → REVERSEC_IN_GA(T6, T7)
REVERSEC_IN_GA(cons(T17, T18), X40) → U2_GA(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
REVERSEC_IN_GA(cons(T17, T18), X40) → PD_IN_GAGA(T18, X39, T17, X40)
PD_IN_GAGA(T18, T19, T17, X40) → U7_GAGA(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
PD_IN_GAGA(T18, T19, T17, X40) → REVERSEC_IN_GA(T18, T19)
U7_GAGA(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_GAGA(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
U7_GAGA(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → APPENDE_IN_GGA(T19, T17, X40)
APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → U3_GGA(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → APPENDE_IN_GGA(T34, T35, X62)
U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_GAA(T6, T7, X21, shuffleF_in_ga(T7, X21))
U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7, X21)
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → U4_GA(T42, T43, X78, pB_in_gaa(T43, X77, X78))
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → PB_IN_GAA(T43, X77, X78)

The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)
QUERYA_IN_G(x1)  =  QUERYA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
REVERSEC_IN_GA(x1, x2)  =  REVERSEC_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
PD_IN_GAGA(x1, x2, x3, x4)  =  PD_IN_GAGA(x1, x3)
U7_GAGA(x1, x2, x3, x4, x5)  =  U7_GAGA(x1, x3, x5)
U8_GAGA(x1, x2, x3, x4, x5)  =  U8_GAGA(x1, x2, x3, x5)
APPENDE_IN_GGA(x1, x2, x3)  =  APPENDE_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x2, x4)
SHUFFLEF_IN_GA(x1, x2)  =  SHUFFLEF_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 10 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → APPENDE_IN_GGA(T34, T35, X62)

The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)
APPENDE_IN_GGA(x1, x2, x3)  =  APPENDE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDE_IN_GGA(cons(T33, T34), T35, cons(T33, X62)) → APPENDE_IN_GGA(T34, T35, X62)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
APPENDE_IN_GGA(x1, x2, x3)  =  APPENDE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDE_IN_GGA(cons(T33, T34), T35) → APPENDE_IN_GGA(T34, T35)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDE_IN_GGA(cons(T33, T34), T35) → APPENDE_IN_GGA(T34, T35)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSEC_IN_GA(cons(T17, T18), X40) → PD_IN_GAGA(T18, X39, T17, X40)
PD_IN_GAGA(T18, T19, T17, X40) → REVERSEC_IN_GA(T18, T19)

The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)
REVERSEC_IN_GA(x1, x2)  =  REVERSEC_IN_GA(x1)
PD_IN_GAGA(x1, x2, x3, x4)  =  PD_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSEC_IN_GA(cons(T17, T18), X40) → PD_IN_GAGA(T18, X39, T17, X40)
PD_IN_GAGA(T18, T19, T17, X40) → REVERSEC_IN_GA(T18, T19)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
REVERSEC_IN_GA(x1, x2)  =  REVERSEC_IN_GA(x1)
PD_IN_GAGA(x1, x2, x3, x4)  =  PD_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REVERSEC_IN_GA(cons(T17, T18)) → PD_IN_GAGA(T18, T17)
PD_IN_GAGA(T18, T17) → REVERSEC_IN_GA(T18)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PD_IN_GAGA(T18, T17) → REVERSEC_IN_GA(T18)
    The graph contains the following edges 1 >= 1

  • REVERSEC_IN_GA(cons(T17, T18)) → PD_IN_GAGA(T18, T17)
    The graph contains the following edges 1 > 1, 1 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7, X21)
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → PB_IN_GAA(T43, X77, X78)
PB_IN_GAA(T6, T7, X21) → U5_GAA(T6, T7, X21, reverseC_in_ga(T6, T7))

The TRS R consists of the following rules:

queryA_in_g(T6) → U1_g(T6, pB_in_gaa(T6, X19, X21))
pB_in_gaa(T6, T7, X21) → U5_gaa(T6, T7, X21, reverseC_in_ga(T6, T7))
reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
U5_gaa(T6, T7, X21, reverseC_out_ga(T6, T7)) → U6_gaa(T6, T7, X21, shuffleF_in_ga(T7, X21))
shuffleF_in_ga(nil, nil) → shuffleF_out_ga(nil, nil)
shuffleF_in_ga(cons(T42, T43), cons(T42, X78)) → U4_ga(T42, T43, X78, pB_in_gaa(T43, X77, X78))
U4_ga(T42, T43, X78, pB_out_gaa(T43, X77, X78)) → shuffleF_out_ga(cons(T42, T43), cons(T42, X78))
U6_gaa(T6, T7, X21, shuffleF_out_ga(T7, X21)) → pB_out_gaa(T6, T7, X21)
U1_g(T6, pB_out_gaa(T6, X19, X21)) → queryA_out_g(T6)

The argument filtering Pi contains the following mapping:
queryA_in_g(x1)  =  queryA_in_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x2, x4)
shuffleF_in_ga(x1, x2)  =  shuffleF_in_ga(x1)
shuffleF_out_ga(x1, x2)  =  shuffleF_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x2, x4)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
queryA_out_g(x1)  =  queryA_out_g(x1)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
SHUFFLEF_IN_GA(x1, x2)  =  SHUFFLEF_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAA(T6, T7, X21, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7, X21)
SHUFFLEF_IN_GA(cons(T42, T43), cons(T42, X78)) → PB_IN_GAA(T43, X77, X78)
PB_IN_GAA(T6, T7, X21) → U5_GAA(T6, T7, X21, reverseC_in_ga(T6, T7))

The TRS R consists of the following rules:

reverseC_in_ga(nil, nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil), cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18), X40) → U2_ga(T17, T18, X40, pD_in_gaga(T18, X39, T17, X40))
U2_ga(T17, T18, X40, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
pD_in_gaga(T18, T19, T17, X40) → U7_gaga(T18, T19, T17, X40, reverseC_in_ga(T18, T19))
U7_gaga(T18, T19, T17, X40, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, X40, appendE_in_gga(T19, T17, X40))
U8_gaga(T18, T19, T17, X40, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
appendE_in_gga(nil, T26, cons(T26, nil)) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35, cons(T33, X62)) → U3_gga(T33, T34, T35, X62, appendE_in_gga(T34, T35, X62))
U3_gga(T33, T34, T35, X62, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))

The argument filtering Pi contains the following mapping:
reverseC_in_ga(x1, x2)  =  reverseC_in_ga(x1)
nil  =  nil
reverseC_out_ga(x1, x2)  =  reverseC_out_ga(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
pD_in_gaga(x1, x2, x3, x4)  =  pD_in_gaga(x1, x3)
U7_gaga(x1, x2, x3, x4, x5)  =  U7_gaga(x1, x3, x5)
U8_gaga(x1, x2, x3, x4, x5)  =  U8_gaga(x1, x2, x3, x5)
appendE_in_gga(x1, x2, x3)  =  appendE_in_gga(x1, x2)
appendE_out_gga(x1, x2, x3)  =  appendE_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
pD_out_gaga(x1, x2, x3, x4)  =  pD_out_gaga(x1, x2, x3, x4)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
SHUFFLEF_IN_GA(x1, x2)  =  SHUFFLEF_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_GAA(T6, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7)
SHUFFLEF_IN_GA(cons(T42, T43)) → PB_IN_GAA(T43)
PB_IN_GAA(T6) → U5_GAA(T6, reverseC_in_ga(T6))

The TRS R consists of the following rules:

reverseC_in_ga(nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18)) → U2_ga(T17, T18, pD_in_gaga(T18, T17))
U2_ga(T17, T18, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
pD_in_gaga(T18, T17) → U7_gaga(T18, T17, reverseC_in_ga(T18))
U7_gaga(T18, T17, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, appendE_in_gga(T19, T17))
U8_gaga(T18, T19, T17, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
appendE_in_gga(nil, T26) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35) → U3_gga(T33, T34, T35, appendE_in_gga(T34, T35))
U3_gga(T33, T34, T35, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))

The set Q consists of the following terms:

reverseC_in_ga(x0)
U2_ga(x0, x1, x2)
pD_in_gaga(x0, x1)
U7_gaga(x0, x1, x2)
U8_gaga(x0, x1, x2, x3)
appendE_in_gga(x0, x1)
U3_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PB_IN_GAA(T6) → U5_GAA(T6, reverseC_in_ga(T6))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(PB_IN_GAA(x1)) = 1 + x1   
POL(SHUFFLEF_IN_GA(x1)) = x1   
POL(U2_ga(x1, x2, x3)) = x3   
POL(U3_gga(x1, x2, x3, x4)) = 1 + x4   
POL(U5_GAA(x1, x2)) = x2   
POL(U7_gaga(x1, x2, x3)) = 1 + x3   
POL(U8_gaga(x1, x2, x3, x4)) = x4   
POL(appendE_in_gga(x1, x2)) = 1 + x1   
POL(appendE_out_gga(x1, x2, x3)) = x3   
POL(cons(x1, x2)) = 1 + x2   
POL(nil) = 1   
POL(pD_in_gaga(x1, x2)) = 1 + x1   
POL(pD_out_gaga(x1, x2, x3, x4)) = x4   
POL(reverseC_in_ga(x1)) = x1   
POL(reverseC_out_ga(x1, x2)) = x2   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

reverseC_in_ga(nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18)) → U2_ga(T17, T18, pD_in_gaga(T18, T17))
U2_ga(T17, T18, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
pD_in_gaga(T18, T17) → U7_gaga(T18, T17, reverseC_in_ga(T18))
U7_gaga(T18, T17, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, appendE_in_gga(T19, T17))
appendE_in_gga(nil, T26) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35) → U3_gga(T33, T34, T35, appendE_in_gga(T34, T35))
U8_gaga(T18, T19, T17, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
U3_gga(T33, T34, T35, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_GAA(T6, reverseC_out_ga(T6, T7)) → SHUFFLEF_IN_GA(T7)
SHUFFLEF_IN_GA(cons(T42, T43)) → PB_IN_GAA(T43)

The TRS R consists of the following rules:

reverseC_in_ga(nil) → reverseC_out_ga(nil, nil)
reverseC_in_ga(cons(T12, nil)) → reverseC_out_ga(cons(T12, nil), cons(T12, nil))
reverseC_in_ga(cons(T17, T18)) → U2_ga(T17, T18, pD_in_gaga(T18, T17))
U2_ga(T17, T18, pD_out_gaga(T18, X39, T17, X40)) → reverseC_out_ga(cons(T17, T18), X40)
pD_in_gaga(T18, T17) → U7_gaga(T18, T17, reverseC_in_ga(T18))
U7_gaga(T18, T17, reverseC_out_ga(T18, T19)) → U8_gaga(T18, T19, T17, appendE_in_gga(T19, T17))
U8_gaga(T18, T19, T17, appendE_out_gga(T19, T17, X40)) → pD_out_gaga(T18, T19, T17, X40)
appendE_in_gga(nil, T26) → appendE_out_gga(nil, T26, cons(T26, nil))
appendE_in_gga(cons(T33, T34), T35) → U3_gga(T33, T34, T35, appendE_in_gga(T34, T35))
U3_gga(T33, T34, T35, appendE_out_gga(T34, T35, X62)) → appendE_out_gga(cons(T33, T34), T35, cons(T33, X62))

The set Q consists of the following terms:

reverseC_in_ga(x0)
U2_ga(x0, x1, x2)
pD_in_gaga(x0, x1)
U7_gaga(x0, x1, x2)
U8_gaga(x0, x1, x2, x3)
appendE_in_gga(x0, x1)
U3_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(29) TRUE