(0) Obligation:

Clauses:

p(X, X).
p(f(X), g(Y)) :- ','(p(f(X), f(Z)), p(Z, g(Y))).

Query: p(g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pA_in_ga(T4, T4) → pA_out_ga(T4, T4)
pA_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(T4, T4) → pA_out_gg(T4, T4)
pA_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, pA_in_gg(T45, g(T32)))
U2_gg(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_gg(f(T45), g(T32))
U1_gg(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_gg(f(T22), g(T9))
U1_ga(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_ga(f(T22), g(T9))
pA_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, pA_in_gg(T45, g(T32)))
U2_ga(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_ga(f(T45), g(T32))

The argument filtering Pi contains the following mapping:
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x1, x2)
f(x1)  =  f(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
g(x1)  =  g
pA_out_gg(x1, x2)  =  pA_out_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x1, x3)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x3)
U2_ga(x1, x2, x3)  =  U2_ga(x1, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(f(T22), g(T9)) → U1_GA(T22, T9, pA_in_gg(T22, g(T9)))
PA_IN_GA(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))
PA_IN_GG(f(T22), g(T9)) → U1_GG(T22, T9, pA_in_gg(T22, g(T9)))
PA_IN_GG(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))
PA_IN_GG(f(T45), g(T32)) → U2_GG(T45, T32, pA_in_gg(T45, g(T32)))
PA_IN_GA(f(T45), g(T32)) → U2_GA(T45, T32, pA_in_gg(T45, g(T32)))

The TRS R consists of the following rules:

pA_in_ga(T4, T4) → pA_out_ga(T4, T4)
pA_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(T4, T4) → pA_out_gg(T4, T4)
pA_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, pA_in_gg(T45, g(T32)))
U2_gg(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_gg(f(T45), g(T32))
U1_gg(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_gg(f(T22), g(T9))
U1_ga(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_ga(f(T22), g(T9))
pA_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, pA_in_gg(T45, g(T32)))
U2_ga(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_ga(f(T45), g(T32))

The argument filtering Pi contains the following mapping:
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x1, x2)
f(x1)  =  f(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
g(x1)  =  g
pA_out_gg(x1, x2)  =  pA_out_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x1, x3)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x3)
U2_ga(x1, x2, x3)  =  U2_ga(x1, x3)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x3)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x3)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(f(T22), g(T9)) → U1_GA(T22, T9, pA_in_gg(T22, g(T9)))
PA_IN_GA(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))
PA_IN_GG(f(T22), g(T9)) → U1_GG(T22, T9, pA_in_gg(T22, g(T9)))
PA_IN_GG(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))
PA_IN_GG(f(T45), g(T32)) → U2_GG(T45, T32, pA_in_gg(T45, g(T32)))
PA_IN_GA(f(T45), g(T32)) → U2_GA(T45, T32, pA_in_gg(T45, g(T32)))

The TRS R consists of the following rules:

pA_in_ga(T4, T4) → pA_out_ga(T4, T4)
pA_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(T4, T4) → pA_out_gg(T4, T4)
pA_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, pA_in_gg(T45, g(T32)))
U2_gg(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_gg(f(T45), g(T32))
U1_gg(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_gg(f(T22), g(T9))
U1_ga(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_ga(f(T22), g(T9))
pA_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, pA_in_gg(T45, g(T32)))
U2_ga(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_ga(f(T45), g(T32))

The argument filtering Pi contains the following mapping:
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x1, x2)
f(x1)  =  f(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
g(x1)  =  g
pA_out_gg(x1, x2)  =  pA_out_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x1, x3)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x3)
U2_ga(x1, x2, x3)  =  U2_ga(x1, x3)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x3)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x3)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))

The TRS R consists of the following rules:

pA_in_ga(T4, T4) → pA_out_ga(T4, T4)
pA_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(T4, T4) → pA_out_gg(T4, T4)
pA_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, pA_in_gg(T22, g(T9)))
pA_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, pA_in_gg(T45, g(T32)))
U2_gg(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_gg(f(T45), g(T32))
U1_gg(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_gg(f(T22), g(T9))
U1_ga(T22, T9, pA_out_gg(T22, g(T9))) → pA_out_ga(f(T22), g(T9))
pA_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, pA_in_gg(T45, g(T32)))
U2_ga(T45, T32, pA_out_gg(T45, g(T32))) → pA_out_ga(f(T45), g(T32))

The argument filtering Pi contains the following mapping:
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x1, x2)
f(x1)  =  f(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
g(x1)  =  g
pA_out_gg(x1, x2)  =  pA_out_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x1, x3)
U2_gg(x1, x2, x3)  =  U2_gg(x1, x3)
U2_ga(x1, x2, x3)  =  U2_ga(x1, x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(f(T22), g(T9)) → PA_IN_GG(T22, g(T9))

R is empty.
The argument filtering Pi contains the following mapping:
f(x1)  =  f(x1)
g(x1)  =  g
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_GG(f(T22), g) → PA_IN_GG(T22, g)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PA_IN_GG(f(T22), g) → PA_IN_GG(T22, g)
    The graph contains the following edges 1 > 1, 2 >= 2

(12) YES