(0) Obligation:

Clauses:

append([], XS, XS).
append(.(X, XS), YS, .(X, ZS)) :- append(XS, YS, ZS).
s2l(s(X), .(Y, Xs)) :- s2l(X, Xs).
s2l(0, []).
goal(X) :- ','(s2l(X, XS), append(XS, YS, ZS)).

Query: goal(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

goalA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
pB_in_gaaaa(T8, T10, X29, X4, X5) → U5_gaaaa(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
s2lC_in_ga(s(T16), .(X64, X65)) → U2_ga(T16, X64, X65, s2lC_in_ga(T16, X65))
s2lC_in_ga(0, []) → s2lC_out_ga(0, [])
U2_ga(T16, X64, X65, s2lC_out_ga(T16, X65)) → s2lC_out_ga(s(T16), .(X64, X65))
U5_gaaaa(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_gaaaa(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
appendE_in_agaa(X96, T22, X97, .(X96, X98)) → U4_agaa(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
appendD_in_gaa([], X112, X112) → appendD_out_gaa([], X112, X112)
appendD_in_gaa(.(T27, T29), X129, .(T27, X130)) → U3_gaa(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
U3_gaa(T27, T29, X129, X130, appendD_out_gaa(T29, X129, X130)) → appendD_out_gaa(.(T27, T29), X129, .(T27, X130))
U4_agaa(X96, T22, X97, X98, appendD_out_gaa(T22, X97, X98)) → appendE_out_agaa(X96, T22, X97, .(X96, X98))
U6_gaaaa(T8, T10, X29, X4, X5, appendE_out_agaa(X29, T10, X4, X5)) → pB_out_gaaaa(T8, T10, X29, X4, X5)
U1_g(T8, pB_out_gaaaa(T8, X30, X29, X4, X5)) → goalA_out_g(s(T8))
goalA_in_g(0) → goalA_out_g(0)

The argument filtering Pi contains the following mapping:
goalA_in_g(x1)  =  goalA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaa(x1, x2, x3, x4, x5)  =  pB_in_gaaaa(x1)
U5_gaaaa(x1, x2, x3, x4, x5, x6)  =  U5_gaaaa(x1, x6)
s2lC_in_ga(x1, x2)  =  s2lC_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
s2lC_out_ga(x1, x2)  =  s2lC_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U6_gaaaa(x1, x2, x3, x4, x5, x6)  =  U6_gaaaa(x1, x2, x6)
appendE_in_agaa(x1, x2, x3, x4)  =  appendE_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendD_in_gaa(x1, x2, x3)  =  appendD_in_gaa(x1)
[]  =  []
appendD_out_gaa(x1, x2, x3)  =  appendD_out_gaa(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x2, x5)
appendE_out_agaa(x1, x2, x3, x4)  =  appendE_out_agaa(x2)
pB_out_gaaaa(x1, x2, x3, x4, x5)  =  pB_out_gaaaa(x1, x2)
goalA_out_g(x1)  =  goalA_out_g(x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

GOALA_IN_G(s(T8)) → U1_G(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
GOALA_IN_G(s(T8)) → PB_IN_GAAAA(T8, X30, X29, X4, X5)
PB_IN_GAAAA(T8, T10, X29, X4, X5) → U5_GAAAA(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
PB_IN_GAAAA(T8, T10, X29, X4, X5) → S2LC_IN_GA(T8, T10)
S2LC_IN_GA(s(T16), .(X64, X65)) → U2_GA(T16, X64, X65, s2lC_in_ga(T16, X65))
S2LC_IN_GA(s(T16), .(X64, X65)) → S2LC_IN_GA(T16, X65)
U5_GAAAA(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_GAAAA(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
U5_GAAAA(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → APPENDE_IN_AGAA(X29, T10, X4, X5)
APPENDE_IN_AGAA(X96, T22, X97, .(X96, X98)) → U4_AGAA(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
APPENDE_IN_AGAA(X96, T22, X97, .(X96, X98)) → APPENDD_IN_GAA(T22, X97, X98)
APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → U3_GAA(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → APPENDD_IN_GAA(T29, X129, X130)

The TRS R consists of the following rules:

goalA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
pB_in_gaaaa(T8, T10, X29, X4, X5) → U5_gaaaa(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
s2lC_in_ga(s(T16), .(X64, X65)) → U2_ga(T16, X64, X65, s2lC_in_ga(T16, X65))
s2lC_in_ga(0, []) → s2lC_out_ga(0, [])
U2_ga(T16, X64, X65, s2lC_out_ga(T16, X65)) → s2lC_out_ga(s(T16), .(X64, X65))
U5_gaaaa(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_gaaaa(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
appendE_in_agaa(X96, T22, X97, .(X96, X98)) → U4_agaa(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
appendD_in_gaa([], X112, X112) → appendD_out_gaa([], X112, X112)
appendD_in_gaa(.(T27, T29), X129, .(T27, X130)) → U3_gaa(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
U3_gaa(T27, T29, X129, X130, appendD_out_gaa(T29, X129, X130)) → appendD_out_gaa(.(T27, T29), X129, .(T27, X130))
U4_agaa(X96, T22, X97, X98, appendD_out_gaa(T22, X97, X98)) → appendE_out_agaa(X96, T22, X97, .(X96, X98))
U6_gaaaa(T8, T10, X29, X4, X5, appendE_out_agaa(X29, T10, X4, X5)) → pB_out_gaaaa(T8, T10, X29, X4, X5)
U1_g(T8, pB_out_gaaaa(T8, X30, X29, X4, X5)) → goalA_out_g(s(T8))
goalA_in_g(0) → goalA_out_g(0)

The argument filtering Pi contains the following mapping:
goalA_in_g(x1)  =  goalA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaa(x1, x2, x3, x4, x5)  =  pB_in_gaaaa(x1)
U5_gaaaa(x1, x2, x3, x4, x5, x6)  =  U5_gaaaa(x1, x6)
s2lC_in_ga(x1, x2)  =  s2lC_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
s2lC_out_ga(x1, x2)  =  s2lC_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U6_gaaaa(x1, x2, x3, x4, x5, x6)  =  U6_gaaaa(x1, x2, x6)
appendE_in_agaa(x1, x2, x3, x4)  =  appendE_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendD_in_gaa(x1, x2, x3)  =  appendD_in_gaa(x1)
[]  =  []
appendD_out_gaa(x1, x2, x3)  =  appendD_out_gaa(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x2, x5)
appendE_out_agaa(x1, x2, x3, x4)  =  appendE_out_agaa(x2)
pB_out_gaaaa(x1, x2, x3, x4, x5)  =  pB_out_gaaaa(x1, x2)
goalA_out_g(x1)  =  goalA_out_g(x1)
GOALA_IN_G(x1)  =  GOALA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAAAA(x1, x2, x3, x4, x5)  =  PB_IN_GAAAA(x1)
U5_GAAAA(x1, x2, x3, x4, x5, x6)  =  U5_GAAAA(x1, x6)
S2LC_IN_GA(x1, x2)  =  S2LC_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U6_GAAAA(x1, x2, x3, x4, x5, x6)  =  U6_GAAAA(x1, x2, x6)
APPENDE_IN_AGAA(x1, x2, x3, x4)  =  APPENDE_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
APPENDD_IN_GAA(x1, x2, x3)  =  APPENDD_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x2, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOALA_IN_G(s(T8)) → U1_G(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
GOALA_IN_G(s(T8)) → PB_IN_GAAAA(T8, X30, X29, X4, X5)
PB_IN_GAAAA(T8, T10, X29, X4, X5) → U5_GAAAA(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
PB_IN_GAAAA(T8, T10, X29, X4, X5) → S2LC_IN_GA(T8, T10)
S2LC_IN_GA(s(T16), .(X64, X65)) → U2_GA(T16, X64, X65, s2lC_in_ga(T16, X65))
S2LC_IN_GA(s(T16), .(X64, X65)) → S2LC_IN_GA(T16, X65)
U5_GAAAA(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_GAAAA(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
U5_GAAAA(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → APPENDE_IN_AGAA(X29, T10, X4, X5)
APPENDE_IN_AGAA(X96, T22, X97, .(X96, X98)) → U4_AGAA(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
APPENDE_IN_AGAA(X96, T22, X97, .(X96, X98)) → APPENDD_IN_GAA(T22, X97, X98)
APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → U3_GAA(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → APPENDD_IN_GAA(T29, X129, X130)

The TRS R consists of the following rules:

goalA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
pB_in_gaaaa(T8, T10, X29, X4, X5) → U5_gaaaa(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
s2lC_in_ga(s(T16), .(X64, X65)) → U2_ga(T16, X64, X65, s2lC_in_ga(T16, X65))
s2lC_in_ga(0, []) → s2lC_out_ga(0, [])
U2_ga(T16, X64, X65, s2lC_out_ga(T16, X65)) → s2lC_out_ga(s(T16), .(X64, X65))
U5_gaaaa(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_gaaaa(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
appendE_in_agaa(X96, T22, X97, .(X96, X98)) → U4_agaa(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
appendD_in_gaa([], X112, X112) → appendD_out_gaa([], X112, X112)
appendD_in_gaa(.(T27, T29), X129, .(T27, X130)) → U3_gaa(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
U3_gaa(T27, T29, X129, X130, appendD_out_gaa(T29, X129, X130)) → appendD_out_gaa(.(T27, T29), X129, .(T27, X130))
U4_agaa(X96, T22, X97, X98, appendD_out_gaa(T22, X97, X98)) → appendE_out_agaa(X96, T22, X97, .(X96, X98))
U6_gaaaa(T8, T10, X29, X4, X5, appendE_out_agaa(X29, T10, X4, X5)) → pB_out_gaaaa(T8, T10, X29, X4, X5)
U1_g(T8, pB_out_gaaaa(T8, X30, X29, X4, X5)) → goalA_out_g(s(T8))
goalA_in_g(0) → goalA_out_g(0)

The argument filtering Pi contains the following mapping:
goalA_in_g(x1)  =  goalA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaa(x1, x2, x3, x4, x5)  =  pB_in_gaaaa(x1)
U5_gaaaa(x1, x2, x3, x4, x5, x6)  =  U5_gaaaa(x1, x6)
s2lC_in_ga(x1, x2)  =  s2lC_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
s2lC_out_ga(x1, x2)  =  s2lC_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U6_gaaaa(x1, x2, x3, x4, x5, x6)  =  U6_gaaaa(x1, x2, x6)
appendE_in_agaa(x1, x2, x3, x4)  =  appendE_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendD_in_gaa(x1, x2, x3)  =  appendD_in_gaa(x1)
[]  =  []
appendD_out_gaa(x1, x2, x3)  =  appendD_out_gaa(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x2, x5)
appendE_out_agaa(x1, x2, x3, x4)  =  appendE_out_agaa(x2)
pB_out_gaaaa(x1, x2, x3, x4, x5)  =  pB_out_gaaaa(x1, x2)
goalA_out_g(x1)  =  goalA_out_g(x1)
GOALA_IN_G(x1)  =  GOALA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAAAA(x1, x2, x3, x4, x5)  =  PB_IN_GAAAA(x1)
U5_GAAAA(x1, x2, x3, x4, x5, x6)  =  U5_GAAAA(x1, x6)
S2LC_IN_GA(x1, x2)  =  S2LC_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U6_GAAAA(x1, x2, x3, x4, x5, x6)  =  U6_GAAAA(x1, x2, x6)
APPENDE_IN_AGAA(x1, x2, x3, x4)  =  APPENDE_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
APPENDD_IN_GAA(x1, x2, x3)  =  APPENDD_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x2, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → APPENDD_IN_GAA(T29, X129, X130)

The TRS R consists of the following rules:

goalA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
pB_in_gaaaa(T8, T10, X29, X4, X5) → U5_gaaaa(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
s2lC_in_ga(s(T16), .(X64, X65)) → U2_ga(T16, X64, X65, s2lC_in_ga(T16, X65))
s2lC_in_ga(0, []) → s2lC_out_ga(0, [])
U2_ga(T16, X64, X65, s2lC_out_ga(T16, X65)) → s2lC_out_ga(s(T16), .(X64, X65))
U5_gaaaa(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_gaaaa(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
appendE_in_agaa(X96, T22, X97, .(X96, X98)) → U4_agaa(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
appendD_in_gaa([], X112, X112) → appendD_out_gaa([], X112, X112)
appendD_in_gaa(.(T27, T29), X129, .(T27, X130)) → U3_gaa(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
U3_gaa(T27, T29, X129, X130, appendD_out_gaa(T29, X129, X130)) → appendD_out_gaa(.(T27, T29), X129, .(T27, X130))
U4_agaa(X96, T22, X97, X98, appendD_out_gaa(T22, X97, X98)) → appendE_out_agaa(X96, T22, X97, .(X96, X98))
U6_gaaaa(T8, T10, X29, X4, X5, appendE_out_agaa(X29, T10, X4, X5)) → pB_out_gaaaa(T8, T10, X29, X4, X5)
U1_g(T8, pB_out_gaaaa(T8, X30, X29, X4, X5)) → goalA_out_g(s(T8))
goalA_in_g(0) → goalA_out_g(0)

The argument filtering Pi contains the following mapping:
goalA_in_g(x1)  =  goalA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaa(x1, x2, x3, x4, x5)  =  pB_in_gaaaa(x1)
U5_gaaaa(x1, x2, x3, x4, x5, x6)  =  U5_gaaaa(x1, x6)
s2lC_in_ga(x1, x2)  =  s2lC_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
s2lC_out_ga(x1, x2)  =  s2lC_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U6_gaaaa(x1, x2, x3, x4, x5, x6)  =  U6_gaaaa(x1, x2, x6)
appendE_in_agaa(x1, x2, x3, x4)  =  appendE_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendD_in_gaa(x1, x2, x3)  =  appendD_in_gaa(x1)
[]  =  []
appendD_out_gaa(x1, x2, x3)  =  appendD_out_gaa(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x2, x5)
appendE_out_agaa(x1, x2, x3, x4)  =  appendE_out_agaa(x2)
pB_out_gaaaa(x1, x2, x3, x4, x5)  =  pB_out_gaaaa(x1, x2)
goalA_out_g(x1)  =  goalA_out_g(x1)
APPENDD_IN_GAA(x1, x2, x3)  =  APPENDD_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GAA(.(T27, T29), X129, .(T27, X130)) → APPENDD_IN_GAA(T29, X129, X130)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPENDD_IN_GAA(x1, x2, x3)  =  APPENDD_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDD_IN_GAA(.(T29)) → APPENDD_IN_GAA(T29)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDD_IN_GAA(.(T29)) → APPENDD_IN_GAA(T29)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LC_IN_GA(s(T16), .(X64, X65)) → S2LC_IN_GA(T16, X65)

The TRS R consists of the following rules:

goalA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaa(T8, X30, X29, X4, X5))
pB_in_gaaaa(T8, T10, X29, X4, X5) → U5_gaaaa(T8, T10, X29, X4, X5, s2lC_in_ga(T8, T10))
s2lC_in_ga(s(T16), .(X64, X65)) → U2_ga(T16, X64, X65, s2lC_in_ga(T16, X65))
s2lC_in_ga(0, []) → s2lC_out_ga(0, [])
U2_ga(T16, X64, X65, s2lC_out_ga(T16, X65)) → s2lC_out_ga(s(T16), .(X64, X65))
U5_gaaaa(T8, T10, X29, X4, X5, s2lC_out_ga(T8, T10)) → U6_gaaaa(T8, T10, X29, X4, X5, appendE_in_agaa(X29, T10, X4, X5))
appendE_in_agaa(X96, T22, X97, .(X96, X98)) → U4_agaa(X96, T22, X97, X98, appendD_in_gaa(T22, X97, X98))
appendD_in_gaa([], X112, X112) → appendD_out_gaa([], X112, X112)
appendD_in_gaa(.(T27, T29), X129, .(T27, X130)) → U3_gaa(T27, T29, X129, X130, appendD_in_gaa(T29, X129, X130))
U3_gaa(T27, T29, X129, X130, appendD_out_gaa(T29, X129, X130)) → appendD_out_gaa(.(T27, T29), X129, .(T27, X130))
U4_agaa(X96, T22, X97, X98, appendD_out_gaa(T22, X97, X98)) → appendE_out_agaa(X96, T22, X97, .(X96, X98))
U6_gaaaa(T8, T10, X29, X4, X5, appendE_out_agaa(X29, T10, X4, X5)) → pB_out_gaaaa(T8, T10, X29, X4, X5)
U1_g(T8, pB_out_gaaaa(T8, X30, X29, X4, X5)) → goalA_out_g(s(T8))
goalA_in_g(0) → goalA_out_g(0)

The argument filtering Pi contains the following mapping:
goalA_in_g(x1)  =  goalA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaa(x1, x2, x3, x4, x5)  =  pB_in_gaaaa(x1)
U5_gaaaa(x1, x2, x3, x4, x5, x6)  =  U5_gaaaa(x1, x6)
s2lC_in_ga(x1, x2)  =  s2lC_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
s2lC_out_ga(x1, x2)  =  s2lC_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U6_gaaaa(x1, x2, x3, x4, x5, x6)  =  U6_gaaaa(x1, x2, x6)
appendE_in_agaa(x1, x2, x3, x4)  =  appendE_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendD_in_gaa(x1, x2, x3)  =  appendD_in_gaa(x1)
[]  =  []
appendD_out_gaa(x1, x2, x3)  =  appendD_out_gaa(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x2, x5)
appendE_out_agaa(x1, x2, x3, x4)  =  appendE_out_agaa(x2)
pB_out_gaaaa(x1, x2, x3, x4, x5)  =  pB_out_gaaaa(x1, x2)
goalA_out_g(x1)  =  goalA_out_g(x1)
S2LC_IN_GA(x1, x2)  =  S2LC_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LC_IN_GA(s(T16), .(X64, X65)) → S2LC_IN_GA(T16, X65)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
S2LC_IN_GA(x1, x2)  =  S2LC_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S2LC_IN_GA(s(T16)) → S2LC_IN_GA(T16)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S2LC_IN_GA(s(T16)) → S2LC_IN_GA(T16)
    The graph contains the following edges 1 > 1

(20) YES