(0) Obligation:

Clauses:

t(N) :- ','(ll(N, Xs), ','(select(X1, Xs, Xs1), ','(ll(M, Xs1), t(M)))).
t(0).
ll(s(N), .(X, Xs)) :- ll(N, Xs).
ll(0, []).
select(X, .(Y, Xs), .(Y, Ys)) :- select(X, Xs, Ys).
select(X, .(X, Xs), Xs).

Query: t(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → U1_G(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8, X32, X5, X31, X6, X7)
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → LLD_IN_GA(T8, T10)
LLD_IN_GA(s(T16), .(X66, X67)) → U2_GA(T16, X66, X67, llD_in_ga(T16, X67))
LLD_IN_GA(s(T16), .(X66, X67)) → LLD_IN_GA(T16, X67)
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_GAAAAA(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → PI_IN_AAGAA(X5, X31, T10, X6, X7)
PI_IN_AAGAA(T19, T20, T10, T21, X7) → U9_AAGAA(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
PI_IN_AAGAA(T19, T20, T10, T21, X7) → SELECTH_IN_AAGA(T19, T20, T10, T21)
SELECTH_IN_AAGA(X131, X132, T34, .(X132, X133)) → U6_AAGA(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
SELECTH_IN_AAGA(X131, X132, T34, .(X132, X133)) → SELECTE_IN_AGA(X131, T34, X133)
SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → U3_AGA(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → SELECTE_IN_AGA(X168, T47, X169)
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_AAGAA(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → PJ_IN_AG(X7, T21)
PJ_IN_AG(T61, T21) → U11_AG(T61, T21, llF_in_ag(T61, T21))
PJ_IN_AG(T61, T21) → LLF_IN_AG(T61, T21)
LLF_IN_AG(s(X221), .(T72, T74)) → U4_AG(X221, T72, T74, llF_in_ag(X221, T74))
LLF_IN_AG(s(X221), .(T72, T74)) → LLF_IN_AG(X221, T74)
U11_AG(T61, T21, llF_out_ag(T61, T21)) → U12_AG(T61, T21, tA_in_g(T61))
U11_AG(T61, T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
TA_IN_G(x1)  =  TA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAAAAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_GAAAAA(x1)
U7_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U7_GAAAAA(x1, x7)
LLD_IN_GA(x1, x2)  =  LLD_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U8_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_GAAAAA(x1, x2, x7)
PI_IN_AAGAA(x1, x2, x3, x4, x5)  =  PI_IN_AAGAA(x3)
U9_AAGAA(x1, x2, x3, x4, x5, x6)  =  U9_AAGAA(x3, x6)
SELECTH_IN_AAGA(x1, x2, x3, x4)  =  SELECTH_IN_AAGA(x3)
U6_AAGA(x1, x2, x3, x4, x5)  =  U6_AAGA(x3, x5)
SELECTE_IN_AGA(x1, x2, x3)  =  SELECTE_IN_AGA(x2)
U3_AGA(x1, x2, x3, x4, x5)  =  U3_AGA(x3, x5)
U10_AAGAA(x1, x2, x3, x4, x5, x6)  =  U10_AAGAA(x3, x4, x6)
PJ_IN_AG(x1, x2)  =  PJ_IN_AG(x2)
U11_AG(x1, x2, x3)  =  U11_AG(x2, x3)
LLF_IN_AG(x1, x2)  =  LLF_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U12_AG(x1, x2, x3)  =  U12_AG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → U1_G(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8, X32, X5, X31, X6, X7)
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → LLD_IN_GA(T8, T10)
LLD_IN_GA(s(T16), .(X66, X67)) → U2_GA(T16, X66, X67, llD_in_ga(T16, X67))
LLD_IN_GA(s(T16), .(X66, X67)) → LLD_IN_GA(T16, X67)
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_GAAAAA(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → PI_IN_AAGAA(X5, X31, T10, X6, X7)
PI_IN_AAGAA(T19, T20, T10, T21, X7) → U9_AAGAA(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
PI_IN_AAGAA(T19, T20, T10, T21, X7) → SELECTH_IN_AAGA(T19, T20, T10, T21)
SELECTH_IN_AAGA(X131, X132, T34, .(X132, X133)) → U6_AAGA(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
SELECTH_IN_AAGA(X131, X132, T34, .(X132, X133)) → SELECTE_IN_AGA(X131, T34, X133)
SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → U3_AGA(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → SELECTE_IN_AGA(X168, T47, X169)
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_AAGAA(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → PJ_IN_AG(X7, T21)
PJ_IN_AG(T61, T21) → U11_AG(T61, T21, llF_in_ag(T61, T21))
PJ_IN_AG(T61, T21) → LLF_IN_AG(T61, T21)
LLF_IN_AG(s(X221), .(T72, T74)) → U4_AG(X221, T72, T74, llF_in_ag(X221, T74))
LLF_IN_AG(s(X221), .(T72, T74)) → LLF_IN_AG(X221, T74)
U11_AG(T61, T21, llF_out_ag(T61, T21)) → U12_AG(T61, T21, tA_in_g(T61))
U11_AG(T61, T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
TA_IN_G(x1)  =  TA_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
PB_IN_GAAAAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_GAAAAA(x1)
U7_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U7_GAAAAA(x1, x7)
LLD_IN_GA(x1, x2)  =  LLD_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U8_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_GAAAAA(x1, x2, x7)
PI_IN_AAGAA(x1, x2, x3, x4, x5)  =  PI_IN_AAGAA(x3)
U9_AAGAA(x1, x2, x3, x4, x5, x6)  =  U9_AAGAA(x3, x6)
SELECTH_IN_AAGA(x1, x2, x3, x4)  =  SELECTH_IN_AAGA(x3)
U6_AAGA(x1, x2, x3, x4, x5)  =  U6_AAGA(x3, x5)
SELECTE_IN_AGA(x1, x2, x3)  =  SELECTE_IN_AGA(x2)
U3_AGA(x1, x2, x3, x4, x5)  =  U3_AGA(x3, x5)
U10_AAGAA(x1, x2, x3, x4, x5, x6)  =  U10_AAGAA(x3, x4, x6)
PJ_IN_AG(x1, x2)  =  PJ_IN_AG(x2)
U11_AG(x1, x2, x3)  =  U11_AG(x2, x3)
LLF_IN_AG(x1, x2)  =  LLF_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U12_AG(x1, x2, x3)  =  U12_AG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 12 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LLF_IN_AG(s(X221), .(T72, T74)) → LLF_IN_AG(X221, T74)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
LLF_IN_AG(x1, x2)  =  LLF_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LLF_IN_AG(s(X221), .(T72, T74)) → LLF_IN_AG(X221, T74)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LLF_IN_AG(x1, x2)  =  LLF_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LLF_IN_AG(.(T74)) → LLF_IN_AG(T74)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LLF_IN_AG(.(T74)) → LLF_IN_AG(T74)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → SELECTE_IN_AGA(X168, T47, X169)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
SELECTE_IN_AGA(x1, x2, x3)  =  SELECTE_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECTE_IN_AGA(X168, .(T45, T47), .(T45, X169)) → SELECTE_IN_AGA(X168, T47, X169)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
SELECTE_IN_AGA(x1, x2, x3)  =  SELECTE_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SELECTE_IN_AGA(.(T47)) → SELECTE_IN_AGA(T47)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SELECTE_IN_AGA(.(T47)) → SELECTE_IN_AGA(T47)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LLD_IN_GA(s(T16), .(X66, X67)) → LLD_IN_GA(T16, X67)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
LLD_IN_GA(x1, x2)  =  LLD_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LLD_IN_GA(s(T16), .(X66, X67)) → LLD_IN_GA(T16, X67)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LLD_IN_GA(x1, x2)  =  LLD_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LLD_IN_GA(s(T16)) → LLD_IN_GA(T16)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LLD_IN_GA(s(T16)) → LLD_IN_GA(T16)
    The graph contains the following edges 1 > 1

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8, X32, X5, X31, X6, X7)
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → PI_IN_AAGAA(X5, X31, T10, X6, X7)
PI_IN_AAGAA(T19, T20, T10, T21, X7) → U9_AAGAA(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → PJ_IN_AG(X7, T21)
PJ_IN_AG(T61, T21) → U11_AG(T61, T21, llF_in_ag(T61, T21))
U11_AG(T61, T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

tA_in_g(s(T8)) → U1_g(T8, pB_in_gaaaaa(T8, X32, X5, X31, X6, X7))
pB_in_gaaaaa(T8, T10, X5, X31, X6, X7) → U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U7_gaaaaa(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_in_aagaa(X5, X31, T10, X6, X7))
pI_in_aagaa(T19, T20, T10, T21, X7) → U9_aagaa(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
U9_aagaa(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → U10_aagaa(T19, T20, T10, T21, X7, pJ_in_ag(X7, T21))
pJ_in_ag(T61, T21) → U11_ag(T61, T21, llF_in_ag(T61, T21))
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
U11_ag(T61, T21, llF_out_ag(T61, T21)) → U12_ag(T61, T21, tA_in_g(T61))
tA_in_g(0) → tA_out_g(0)
U12_ag(T61, T21, tA_out_g(T61)) → pJ_out_ag(T61, T21)
U10_aagaa(T19, T20, T10, T21, X7, pJ_out_ag(X7, T21)) → pI_out_aagaa(T19, T20, T10, T21, X7)
U8_gaaaaa(T8, T10, X5, X31, X6, X7, pI_out_aagaa(X5, X31, T10, X6, X7)) → pB_out_gaaaaa(T8, T10, X5, X31, X6, X7)
U1_g(T8, pB_out_gaaaaa(T8, X32, X5, X31, X6, X7)) → tA_out_g(s(T8))

The argument filtering Pi contains the following mapping:
tA_in_g(x1)  =  tA_in_g(x1)
s(x1)  =  s(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
pB_in_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_in_gaaaaa(x1)
U7_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U7_gaaaaa(x1, x7)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
U8_gaaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_gaaaaa(x1, x2, x7)
pI_in_aagaa(x1, x2, x3, x4, x5)  =  pI_in_aagaa(x3)
U9_aagaa(x1, x2, x3, x4, x5, x6)  =  U9_aagaa(x3, x6)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
U10_aagaa(x1, x2, x3, x4, x5, x6)  =  U10_aagaa(x3, x4, x6)
pJ_in_ag(x1, x2)  =  pJ_in_ag(x2)
U11_ag(x1, x2, x3)  =  U11_ag(x2, x3)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
U12_ag(x1, x2, x3)  =  U12_ag(x1, x2, x3)
tA_out_g(x1)  =  tA_out_g(x1)
pJ_out_ag(x1, x2)  =  pJ_out_ag(x1, x2)
pI_out_aagaa(x1, x2, x3, x4, x5)  =  pI_out_aagaa(x3, x4, x5)
pB_out_gaaaaa(x1, x2, x3, x4, x5, x6)  =  pB_out_gaaaaa(x1, x2, x5, x6)
TA_IN_G(x1)  =  TA_IN_G(x1)
PB_IN_GAAAAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_GAAAAA(x1)
U7_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U7_GAAAAA(x1, x7)
PI_IN_AAGAA(x1, x2, x3, x4, x5)  =  PI_IN_AAGAA(x3)
U9_AAGAA(x1, x2, x3, x4, x5, x6)  =  U9_AAGAA(x3, x6)
PJ_IN_AG(x1, x2)  =  PJ_IN_AG(x2)
U11_AG(x1, x2, x3)  =  U11_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8, X32, X5, X31, X6, X7)
PB_IN_GAAAAA(T8, T10, X5, X31, X6, X7) → U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_in_ga(T8, T10))
U7_GAAAAA(T8, T10, X5, X31, X6, X7, llD_out_ga(T8, T10)) → PI_IN_AAGAA(X5, X31, T10, X6, X7)
PI_IN_AAGAA(T19, T20, T10, T21, X7) → U9_AAGAA(T19, T20, T10, T21, X7, selectH_in_aaga(T19, T20, T10, T21))
U9_AAGAA(T19, T20, T10, T21, X7, selectH_out_aaga(T19, T20, T10, T21)) → PJ_IN_AG(X7, T21)
PJ_IN_AG(T61, T21) → U11_AG(T61, T21, llF_in_ag(T61, T21))
U11_AG(T61, T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

llD_in_ga(s(T16), .(X66, X67)) → U2_ga(T16, X66, X67, llD_in_ga(T16, X67))
llD_in_ga(0, []) → llD_out_ga(0, [])
selectH_in_aaga(X131, X132, T34, .(X132, X133)) → U6_aaga(X131, X132, T34, X133, selectE_in_aga(X131, T34, X133))
selectH_in_aaga(X193, X193, T58, T58) → selectH_out_aaga(X193, X193, T58, T58)
llF_in_ag(s(X221), .(T72, T74)) → U4_ag(X221, T72, T74, llF_in_ag(X221, T74))
llF_in_ag(0, []) → llF_out_ag(0, [])
U2_ga(T16, X66, X67, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X66, X67))
U6_aaga(X131, X132, T34, X133, selectE_out_aga(X131, T34, X133)) → selectH_out_aaga(X131, X132, T34, .(X132, X133))
U4_ag(X221, T72, T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T72, T74))
selectE_in_aga(X168, .(T45, T47), .(T45, X169)) → U3_aga(X168, T45, T47, X169, selectE_in_aga(X168, T47, X169))
selectE_in_aga(T54, .(T54, T55), T55) → selectE_out_aga(T54, .(T54, T55), T55)
U3_aga(X168, T45, T47, X169, selectE_out_aga(X168, T47, X169)) → selectE_out_aga(X168, .(T45, T47), .(T45, X169))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
llD_in_ga(x1, x2)  =  llD_in_ga(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
0  =  0
llD_out_ga(x1, x2)  =  llD_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
selectH_in_aaga(x1, x2, x3, x4)  =  selectH_in_aaga(x3)
U6_aaga(x1, x2, x3, x4, x5)  =  U6_aaga(x3, x5)
selectE_in_aga(x1, x2, x3)  =  selectE_in_aga(x2)
U3_aga(x1, x2, x3, x4, x5)  =  U3_aga(x3, x5)
selectE_out_aga(x1, x2, x3)  =  selectE_out_aga(x2, x3)
selectH_out_aaga(x1, x2, x3, x4)  =  selectH_out_aaga(x3, x4)
llF_in_ag(x1, x2)  =  llF_in_ag(x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
[]  =  []
llF_out_ag(x1, x2)  =  llF_out_ag(x1, x2)
TA_IN_G(x1)  =  TA_IN_G(x1)
PB_IN_GAAAAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_GAAAAA(x1)
U7_GAAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U7_GAAAAA(x1, x7)
PI_IN_AAGAA(x1, x2, x3, x4, x5)  =  PI_IN_AAGAA(x3)
U9_AAGAA(x1, x2, x3, x4, x5, x6)  =  U9_AAGAA(x3, x6)
PJ_IN_AG(x1, x2)  =  PJ_IN_AG(x2)
U11_AG(x1, x2, x3)  =  U11_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8)
PB_IN_GAAAAA(T8) → U7_GAAAAA(T8, llD_in_ga(T8))
U7_GAAAAA(T8, llD_out_ga(T8, T10)) → PI_IN_AAGAA(T10)
PI_IN_AAGAA(T10) → U9_AAGAA(T10, selectH_in_aaga(T10))
U9_AAGAA(T10, selectH_out_aaga(T10, T21)) → PJ_IN_AG(T21)
PJ_IN_AG(T21) → U11_AG(T21, llF_in_ag(T21))
U11_AG(T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

llD_in_ga(s(T16)) → U2_ga(T16, llD_in_ga(T16))
llD_in_ga(0) → llD_out_ga(0, [])
selectH_in_aaga(T34) → U6_aaga(T34, selectE_in_aga(T34))
selectH_in_aaga(T58) → selectH_out_aaga(T58, T58)
llF_in_ag(.(T74)) → U4_ag(T74, llF_in_ag(T74))
llF_in_ag([]) → llF_out_ag(0, [])
U2_ga(T16, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X67))
U6_aaga(T34, selectE_out_aga(T34, X133)) → selectH_out_aaga(T34, .(X133))
U4_ag(T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T74))
selectE_in_aga(.(T47)) → U3_aga(T47, selectE_in_aga(T47))
selectE_in_aga(.(T55)) → selectE_out_aga(.(T55), T55)
U3_aga(T47, selectE_out_aga(T47, X169)) → selectE_out_aga(.(T47), .(X169))

The set Q consists of the following terms:

llD_in_ga(x0)
selectH_in_aaga(x0)
llF_in_ag(x0)
U2_ga(x0, x1)
U6_aaga(x0, x1)
U4_ag(x0, x1)
selectE_in_aga(x0)
U3_aga(x0, x1)

We have to consider all (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U9_AAGAA(T10, selectH_out_aaga(T10, T21)) → PJ_IN_AG(T21)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1)) = 1 + x1   
POL(0) = 0   
POL(PB_IN_GAAAAA(x1)) = 1 + x1   
POL(PI_IN_AAGAA(x1)) = 1 + x1   
POL(PJ_IN_AG(x1)) = x1   
POL(TA_IN_G(x1)) = x1   
POL(U11_AG(x1, x2)) = x2   
POL(U2_ga(x1, x2)) = 1 + x2   
POL(U3_aga(x1, x2)) = 1 + x2   
POL(U4_ag(x1, x2)) = 1 + x2   
POL(U6_aaga(x1, x2)) = x2   
POL(U7_GAAAAA(x1, x2)) = 1 + x2   
POL(U9_AAGAA(x1, x2)) = 1 + x2   
POL([]) = 0   
POL(llD_in_ga(x1)) = x1   
POL(llD_out_ga(x1, x2)) = x2   
POL(llF_in_ag(x1)) = x1   
POL(llF_out_ag(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   
POL(selectE_in_aga(x1)) = x1   
POL(selectE_out_aga(x1, x2)) = 1 + x2   
POL(selectH_in_aaga(x1)) = x1   
POL(selectH_out_aaga(x1, x2)) = x2   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

llD_in_ga(s(T16)) → U2_ga(T16, llD_in_ga(T16))
llD_in_ga(0) → llD_out_ga(0, [])
selectH_in_aaga(T34) → U6_aaga(T34, selectE_in_aga(T34))
selectH_in_aaga(T58) → selectH_out_aaga(T58, T58)
llF_in_ag(.(T74)) → U4_ag(T74, llF_in_ag(T74))
llF_in_ag([]) → llF_out_ag(0, [])
U2_ga(T16, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X67))
selectE_in_aga(.(T47)) → U3_aga(T47, selectE_in_aga(T47))
selectE_in_aga(.(T55)) → selectE_out_aga(.(T55), T55)
U6_aaga(T34, selectE_out_aga(T34, X133)) → selectH_out_aaga(T34, .(X133))
U4_ag(T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T74))
U3_aga(T47, selectE_out_aga(T47, X169)) → selectE_out_aga(.(T47), .(X169))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TA_IN_G(s(T8)) → PB_IN_GAAAAA(T8)
PB_IN_GAAAAA(T8) → U7_GAAAAA(T8, llD_in_ga(T8))
U7_GAAAAA(T8, llD_out_ga(T8, T10)) → PI_IN_AAGAA(T10)
PI_IN_AAGAA(T10) → U9_AAGAA(T10, selectH_in_aaga(T10))
PJ_IN_AG(T21) → U11_AG(T21, llF_in_ag(T21))
U11_AG(T21, llF_out_ag(T61, T21)) → TA_IN_G(T61)

The TRS R consists of the following rules:

llD_in_ga(s(T16)) → U2_ga(T16, llD_in_ga(T16))
llD_in_ga(0) → llD_out_ga(0, [])
selectH_in_aaga(T34) → U6_aaga(T34, selectE_in_aga(T34))
selectH_in_aaga(T58) → selectH_out_aaga(T58, T58)
llF_in_ag(.(T74)) → U4_ag(T74, llF_in_ag(T74))
llF_in_ag([]) → llF_out_ag(0, [])
U2_ga(T16, llD_out_ga(T16, X67)) → llD_out_ga(s(T16), .(X67))
U6_aaga(T34, selectE_out_aga(T34, X133)) → selectH_out_aaga(T34, .(X133))
U4_ag(T74, llF_out_ag(X221, T74)) → llF_out_ag(s(X221), .(T74))
selectE_in_aga(.(T47)) → U3_aga(T47, selectE_in_aga(T47))
selectE_in_aga(.(T55)) → selectE_out_aga(.(T55), T55)
U3_aga(T47, selectE_out_aga(T47, X169)) → selectE_out_aga(.(T47), .(X169))

The set Q consists of the following terms:

llD_in_ga(x0)
selectH_in_aaga(x0)
llF_in_ag(x0)
U2_ga(x0, x1)
U6_aaga(x0, x1)
U4_ag(x0, x1)
selectE_in_aga(x0)
U3_aga(x0, x1)

We have to consider all (P,Q,R)-chains.

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 6 less nodes.

(36) TRUE