(0) Obligation:
Clauses:
sum(X, 0, X).
sum(X, s(Y), s(Z)) :- sum(X, Y, Z).
Query: sum(a,g,a)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sumA_in_aga(T5, 0, T5) → sumA_out_aga(T5, 0, T5)
sumA_in_aga(T19, s(0), s(T19)) → sumA_out_aga(T19, s(0), s(T19))
sumA_in_aga(T29, s(s(T27)), s(s(T30))) → U1_aga(T29, T27, T30, sumA_in_aga(T29, T27, T30))
U1_aga(T29, T27, T30, sumA_out_aga(T29, T27, T30)) → sumA_out_aga(T29, s(s(T27)), s(s(T30)))
The argument filtering Pi contains the following mapping:
sumA_in_aga(
x1,
x2,
x3) =
sumA_in_aga(
x2)
0 =
0
sumA_out_aga(
x1,
x2,
x3) =
sumA_out_aga(
x2)
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x2,
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → U1_AGA(T29, T27, T30, sumA_in_aga(T29, T27, T30))
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → SUMA_IN_AGA(T29, T27, T30)
The TRS R consists of the following rules:
sumA_in_aga(T5, 0, T5) → sumA_out_aga(T5, 0, T5)
sumA_in_aga(T19, s(0), s(T19)) → sumA_out_aga(T19, s(0), s(T19))
sumA_in_aga(T29, s(s(T27)), s(s(T30))) → U1_aga(T29, T27, T30, sumA_in_aga(T29, T27, T30))
U1_aga(T29, T27, T30, sumA_out_aga(T29, T27, T30)) → sumA_out_aga(T29, s(s(T27)), s(s(T30)))
The argument filtering Pi contains the following mapping:
sumA_in_aga(
x1,
x2,
x3) =
sumA_in_aga(
x2)
0 =
0
sumA_out_aga(
x1,
x2,
x3) =
sumA_out_aga(
x2)
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x2,
x4)
SUMA_IN_AGA(
x1,
x2,
x3) =
SUMA_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4) =
U1_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → U1_AGA(T29, T27, T30, sumA_in_aga(T29, T27, T30))
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → SUMA_IN_AGA(T29, T27, T30)
The TRS R consists of the following rules:
sumA_in_aga(T5, 0, T5) → sumA_out_aga(T5, 0, T5)
sumA_in_aga(T19, s(0), s(T19)) → sumA_out_aga(T19, s(0), s(T19))
sumA_in_aga(T29, s(s(T27)), s(s(T30))) → U1_aga(T29, T27, T30, sumA_in_aga(T29, T27, T30))
U1_aga(T29, T27, T30, sumA_out_aga(T29, T27, T30)) → sumA_out_aga(T29, s(s(T27)), s(s(T30)))
The argument filtering Pi contains the following mapping:
sumA_in_aga(
x1,
x2,
x3) =
sumA_in_aga(
x2)
0 =
0
sumA_out_aga(
x1,
x2,
x3) =
sumA_out_aga(
x2)
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x2,
x4)
SUMA_IN_AGA(
x1,
x2,
x3) =
SUMA_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4) =
U1_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → SUMA_IN_AGA(T29, T27, T30)
The TRS R consists of the following rules:
sumA_in_aga(T5, 0, T5) → sumA_out_aga(T5, 0, T5)
sumA_in_aga(T19, s(0), s(T19)) → sumA_out_aga(T19, s(0), s(T19))
sumA_in_aga(T29, s(s(T27)), s(s(T30))) → U1_aga(T29, T27, T30, sumA_in_aga(T29, T27, T30))
U1_aga(T29, T27, T30, sumA_out_aga(T29, T27, T30)) → sumA_out_aga(T29, s(s(T27)), s(s(T30)))
The argument filtering Pi contains the following mapping:
sumA_in_aga(
x1,
x2,
x3) =
sumA_in_aga(
x2)
0 =
0
sumA_out_aga(
x1,
x2,
x3) =
sumA_out_aga(
x2)
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x2,
x4)
SUMA_IN_AGA(
x1,
x2,
x3) =
SUMA_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUMA_IN_AGA(T29, s(s(T27)), s(s(T30))) → SUMA_IN_AGA(T29, T27, T30)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUMA_IN_AGA(
x1,
x2,
x3) =
SUMA_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMA_IN_AGA(s(s(T27))) → SUMA_IN_AGA(T27)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUMA_IN_AGA(s(s(T27))) → SUMA_IN_AGA(T27)
The graph contains the following edges 1 > 1
(12) YES