(0) Obligation:
Clauses:
suffix(Xs, Ys) :- app(X1, Xs, Ys).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
Query: suffix(a,g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
suffixA_in_ag(T7, T6) → U1_ag(T7, T6, appB_in_aag(X6, T7, T6))
appB_in_aag([], T12, T12) → appB_out_aag([], T12, T12)
appB_in_aag(.(T20, X29), T22, .(T20, T21)) → U2_aag(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
U2_aag(T20, X29, T22, T21, appB_out_aag(X29, T22, T21)) → appB_out_aag(.(T20, X29), T22, .(T20, T21))
U1_ag(T7, T6, appB_out_aag(X6, T7, T6)) → suffixA_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
suffixA_in_ag(
x1,
x2) =
suffixA_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
appB_in_aag(
x1,
x2,
x3) =
appB_in_aag(
x3)
appB_out_aag(
x1,
x2,
x3) =
appB_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
suffixA_out_ag(
x1,
x2) =
suffixA_out_ag(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUFFIXA_IN_AG(T7, T6) → U1_AG(T7, T6, appB_in_aag(X6, T7, T6))
SUFFIXA_IN_AG(T7, T6) → APPB_IN_AAG(X6, T7, T6)
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → U2_AAG(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → APPB_IN_AAG(X29, T22, T21)
The TRS R consists of the following rules:
suffixA_in_ag(T7, T6) → U1_ag(T7, T6, appB_in_aag(X6, T7, T6))
appB_in_aag([], T12, T12) → appB_out_aag([], T12, T12)
appB_in_aag(.(T20, X29), T22, .(T20, T21)) → U2_aag(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
U2_aag(T20, X29, T22, T21, appB_out_aag(X29, T22, T21)) → appB_out_aag(.(T20, X29), T22, .(T20, T21))
U1_ag(T7, T6, appB_out_aag(X6, T7, T6)) → suffixA_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
suffixA_in_ag(
x1,
x2) =
suffixA_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
appB_in_aag(
x1,
x2,
x3) =
appB_in_aag(
x3)
appB_out_aag(
x1,
x2,
x3) =
appB_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
suffixA_out_ag(
x1,
x2) =
suffixA_out_ag(
x1,
x2)
SUFFIXA_IN_AG(
x1,
x2) =
SUFFIXA_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
APPB_IN_AAG(
x1,
x2,
x3) =
APPB_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUFFIXA_IN_AG(T7, T6) → U1_AG(T7, T6, appB_in_aag(X6, T7, T6))
SUFFIXA_IN_AG(T7, T6) → APPB_IN_AAG(X6, T7, T6)
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → U2_AAG(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → APPB_IN_AAG(X29, T22, T21)
The TRS R consists of the following rules:
suffixA_in_ag(T7, T6) → U1_ag(T7, T6, appB_in_aag(X6, T7, T6))
appB_in_aag([], T12, T12) → appB_out_aag([], T12, T12)
appB_in_aag(.(T20, X29), T22, .(T20, T21)) → U2_aag(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
U2_aag(T20, X29, T22, T21, appB_out_aag(X29, T22, T21)) → appB_out_aag(.(T20, X29), T22, .(T20, T21))
U1_ag(T7, T6, appB_out_aag(X6, T7, T6)) → suffixA_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
suffixA_in_ag(
x1,
x2) =
suffixA_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
appB_in_aag(
x1,
x2,
x3) =
appB_in_aag(
x3)
appB_out_aag(
x1,
x2,
x3) =
appB_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
suffixA_out_ag(
x1,
x2) =
suffixA_out_ag(
x1,
x2)
SUFFIXA_IN_AG(
x1,
x2) =
SUFFIXA_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
APPB_IN_AAG(
x1,
x2,
x3) =
APPB_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → APPB_IN_AAG(X29, T22, T21)
The TRS R consists of the following rules:
suffixA_in_ag(T7, T6) → U1_ag(T7, T6, appB_in_aag(X6, T7, T6))
appB_in_aag([], T12, T12) → appB_out_aag([], T12, T12)
appB_in_aag(.(T20, X29), T22, .(T20, T21)) → U2_aag(T20, X29, T22, T21, appB_in_aag(X29, T22, T21))
U2_aag(T20, X29, T22, T21, appB_out_aag(X29, T22, T21)) → appB_out_aag(.(T20, X29), T22, .(T20, T21))
U1_ag(T7, T6, appB_out_aag(X6, T7, T6)) → suffixA_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
suffixA_in_ag(
x1,
x2) =
suffixA_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
appB_in_aag(
x1,
x2,
x3) =
appB_in_aag(
x3)
appB_out_aag(
x1,
x2,
x3) =
appB_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
suffixA_out_ag(
x1,
x2) =
suffixA_out_ag(
x1,
x2)
APPB_IN_AAG(
x1,
x2,
x3) =
APPB_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPB_IN_AAG(.(T20, X29), T22, .(T20, T21)) → APPB_IN_AAG(X29, T22, T21)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPB_IN_AAG(
x1,
x2,
x3) =
APPB_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPB_IN_AAG(.(T20, T21)) → APPB_IN_AAG(T21)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPB_IN_AAG(.(T20, T21)) → APPB_IN_AAG(T21)
The graph contains the following edges 1 > 1
(12) YES