(0) Obligation:

Clauses:

ss(Xs, Ys) :- ','(perm(Xs, Ys), ordered(Ys)).
perm([], []).
perm(Xs, .(X, Ys)) :- ','(app(X1s, .(X, X2s), Xs), ','(app(X1s, X2s, Zs), perm(Zs, Ys))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
ordered([]).
ordered(.(X1, [])).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(0, s(X2)).
less(s(X), s(Y)) :- less(X, Y).

Query: ss(g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SSA_IN_GA(T14, .(T17, T18)) → U1_GA(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
SSA_IN_GA(T14, .(T17, T18)) → PB_IN_AAAGAA(X23, T17, X24, T14, X25, T18)
PB_IN_AAAGAA(T23, T26, T24, T14, X25, T25) → U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
PB_IN_AAAGAA(T23, T26, T24, T14, X25, T25) → APPC_IN_AAAG(T23, T26, T24, T14)
APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → U2_AAAG(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → APPC_IN_AAAG(X63, T50, X64, T49)
U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_AAAGAA(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → PK_IN_GGAAG(T23, T24, X25, T25, T26)
PK_IN_GGAAG(T23, T24, T57, T25, T26) → U10_GGAAG(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
PK_IN_GGAAG(T23, T24, T57, T25, T26) → APPD_IN_GGA(T23, T24, T57)
APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → U3_GGA(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → APPD_IN_GGA(T72, T73, X92)
U10_GGAAG(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_GGAAG(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
U10_GGAAG(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → PL_IN_GAG(T57, T25, T26)
PL_IN_GAG(T57, T76, T26) → U12_GAG(T57, T76, T26, permE_in_ga(T57, T76))
PL_IN_GAG(T57, T76, T26) → PERME_IN_GA(T57, T76)
PERME_IN_GA(T83, .(T86, T87)) → U4_GA(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
PERME_IN_GA(T83, .(T86, T87)) → PF_IN_AAAGAA(X107, T86, X108, T83, X109, T87)
PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → APPC_IN_AAAG(T92, T86, T93, T83)
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_AAAGAA(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93, X109, T94)
PM_IN_GGAA(T92, T93, T101, T94) → U16_GGAA(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
PM_IN_GGAA(T92, T93, T101, T94) → APPD_IN_GGA(T92, T93, T101)
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_GGAA(T92, T93, T101, T94, permE_in_ga(T101, T94))
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101, T94)
U12_GAG(T57, T76, T26, permE_out_ga(T57, T76)) → U13_GAG(T57, T76, T26, orderedG_in_gg(T26, T76))
U12_GAG(T57, T76, T26, permE_out_ga(T57, T76)) → ORDEREDG_IN_GG(T26, T76)
ORDEREDG_IN_GG(T115, .(T116, T117)) → U5_GG(T115, T116, T117, pH_in_ggg(T115, T116, T117))
ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
PH_IN_GGG(T115, T116, T117) → LESSJ_IN_GG(T115, T116)
LESSJ_IN_GG(s(T131), T132) → U7_GG(T131, T132, lessI_in_gg(T131, T132))
LESSJ_IN_GG(s(T131), T132) → LESSI_IN_GG(T131, T132)
LESSI_IN_GG(s(T144), s(T145)) → U6_GG(T144, T145, lessI_in_gg(T144, T145))
LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_GGG(T115, T116, T117, orderedG_in_gg(T116, T117))
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
SSA_IN_GA(x1, x2)  =  SSA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
PB_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAAGAA(x4)
U8_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_AAAGAA(x4, x7)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)
U2_AAAG(x1, x2, x3, x4, x5, x6)  =  U2_AAAG(x1, x5, x6)
U9_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_AAAGAA(x1, x2, x3, x4, x7)
PK_IN_GGAAG(x1, x2, x3, x4, x5)  =  PK_IN_GGAAG(x1, x2, x5)
U10_GGAAG(x1, x2, x3, x4, x5, x6)  =  U10_GGAAG(x1, x2, x5, x6)
APPD_IN_GGA(x1, x2, x3)  =  APPD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U11_GGAAG(x1, x2, x3, x4, x5, x6)  =  U11_GGAAG(x1, x2, x3, x5, x6)
PL_IN_GAG(x1, x2, x3)  =  PL_IN_GAG(x1, x3)
U12_GAG(x1, x2, x3, x4)  =  U12_GAG(x1, x3, x4)
PERME_IN_GA(x1, x2)  =  PERME_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
PF_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PF_IN_AAAGAA(x4)
U14_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U14_AAAGAA(x4, x7)
U15_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U15_AAAGAA(x1, x2, x3, x4, x7)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U16_GGAA(x1, x2, x3, x4, x5)  =  U16_GGAA(x1, x2, x5)
U17_GGAA(x1, x2, x3, x4, x5)  =  U17_GGAA(x1, x2, x3, x5)
U13_GAG(x1, x2, x3, x4)  =  U13_GAG(x1, x2, x3, x4)
ORDEREDG_IN_GG(x1, x2)  =  ORDEREDG_IN_GG(x1, x2)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x2, x3, x4)
PH_IN_GGG(x1, x2, x3)  =  PH_IN_GGG(x1, x2, x3)
U18_GGG(x1, x2, x3, x4)  =  U18_GGG(x1, x2, x3, x4)
LESSJ_IN_GG(x1, x2)  =  LESSJ_IN_GG(x1, x2)
U7_GG(x1, x2, x3)  =  U7_GG(x1, x2, x3)
LESSI_IN_GG(x1, x2)  =  LESSI_IN_GG(x1, x2)
U6_GG(x1, x2, x3)  =  U6_GG(x1, x2, x3)
U19_GGG(x1, x2, x3, x4)  =  U19_GGG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SSA_IN_GA(T14, .(T17, T18)) → U1_GA(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
SSA_IN_GA(T14, .(T17, T18)) → PB_IN_AAAGAA(X23, T17, X24, T14, X25, T18)
PB_IN_AAAGAA(T23, T26, T24, T14, X25, T25) → U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
PB_IN_AAAGAA(T23, T26, T24, T14, X25, T25) → APPC_IN_AAAG(T23, T26, T24, T14)
APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → U2_AAAG(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → APPC_IN_AAAG(X63, T50, X64, T49)
U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_AAAGAA(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
U8_AAAGAA(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → PK_IN_GGAAG(T23, T24, X25, T25, T26)
PK_IN_GGAAG(T23, T24, T57, T25, T26) → U10_GGAAG(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
PK_IN_GGAAG(T23, T24, T57, T25, T26) → APPD_IN_GGA(T23, T24, T57)
APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → U3_GGA(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → APPD_IN_GGA(T72, T73, X92)
U10_GGAAG(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_GGAAG(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
U10_GGAAG(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → PL_IN_GAG(T57, T25, T26)
PL_IN_GAG(T57, T76, T26) → U12_GAG(T57, T76, T26, permE_in_ga(T57, T76))
PL_IN_GAG(T57, T76, T26) → PERME_IN_GA(T57, T76)
PERME_IN_GA(T83, .(T86, T87)) → U4_GA(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
PERME_IN_GA(T83, .(T86, T87)) → PF_IN_AAAGAA(X107, T86, X108, T83, X109, T87)
PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → APPC_IN_AAAG(T92, T86, T93, T83)
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_AAAGAA(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93, X109, T94)
PM_IN_GGAA(T92, T93, T101, T94) → U16_GGAA(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
PM_IN_GGAA(T92, T93, T101, T94) → APPD_IN_GGA(T92, T93, T101)
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_GGAA(T92, T93, T101, T94, permE_in_ga(T101, T94))
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101, T94)
U12_GAG(T57, T76, T26, permE_out_ga(T57, T76)) → U13_GAG(T57, T76, T26, orderedG_in_gg(T26, T76))
U12_GAG(T57, T76, T26, permE_out_ga(T57, T76)) → ORDEREDG_IN_GG(T26, T76)
ORDEREDG_IN_GG(T115, .(T116, T117)) → U5_GG(T115, T116, T117, pH_in_ggg(T115, T116, T117))
ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
PH_IN_GGG(T115, T116, T117) → LESSJ_IN_GG(T115, T116)
LESSJ_IN_GG(s(T131), T132) → U7_GG(T131, T132, lessI_in_gg(T131, T132))
LESSJ_IN_GG(s(T131), T132) → LESSI_IN_GG(T131, T132)
LESSI_IN_GG(s(T144), s(T145)) → U6_GG(T144, T145, lessI_in_gg(T144, T145))
LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_GGG(T115, T116, T117, orderedG_in_gg(T116, T117))
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
SSA_IN_GA(x1, x2)  =  SSA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
PB_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PB_IN_AAAGAA(x4)
U8_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_AAAGAA(x4, x7)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)
U2_AAAG(x1, x2, x3, x4, x5, x6)  =  U2_AAAG(x1, x5, x6)
U9_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_AAAGAA(x1, x2, x3, x4, x7)
PK_IN_GGAAG(x1, x2, x3, x4, x5)  =  PK_IN_GGAAG(x1, x2, x5)
U10_GGAAG(x1, x2, x3, x4, x5, x6)  =  U10_GGAAG(x1, x2, x5, x6)
APPD_IN_GGA(x1, x2, x3)  =  APPD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U11_GGAAG(x1, x2, x3, x4, x5, x6)  =  U11_GGAAG(x1, x2, x3, x5, x6)
PL_IN_GAG(x1, x2, x3)  =  PL_IN_GAG(x1, x3)
U12_GAG(x1, x2, x3, x4)  =  U12_GAG(x1, x3, x4)
PERME_IN_GA(x1, x2)  =  PERME_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
PF_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PF_IN_AAAGAA(x4)
U14_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U14_AAAGAA(x4, x7)
U15_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U15_AAAGAA(x1, x2, x3, x4, x7)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U16_GGAA(x1, x2, x3, x4, x5)  =  U16_GGAA(x1, x2, x5)
U17_GGAA(x1, x2, x3, x4, x5)  =  U17_GGAA(x1, x2, x3, x5)
U13_GAG(x1, x2, x3, x4)  =  U13_GAG(x1, x2, x3, x4)
ORDEREDG_IN_GG(x1, x2)  =  ORDEREDG_IN_GG(x1, x2)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x2, x3, x4)
PH_IN_GGG(x1, x2, x3)  =  PH_IN_GGG(x1, x2, x3)
U18_GGG(x1, x2, x3, x4)  =  U18_GGG(x1, x2, x3, x4)
LESSJ_IN_GG(x1, x2)  =  LESSJ_IN_GG(x1, x2)
U7_GG(x1, x2, x3)  =  U7_GG(x1, x2, x3)
LESSI_IN_GG(x1, x2)  =  LESSI_IN_GG(x1, x2)
U6_GG(x1, x2, x3)  =  U6_GG(x1, x2, x3)
U19_GGG(x1, x2, x3, x4)  =  U19_GGG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 27 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
LESSI_IN_GG(x1, x2)  =  LESSI_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSI_IN_GG(s(T144), s(T145)) → LESSI_IN_GG(T144, T145)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
ORDEREDG_IN_GG(x1, x2)  =  ORDEREDG_IN_GG(x1, x2)
PH_IN_GGG(x1, x2, x3)  =  PH_IN_GGG(x1, x2, x3)
U18_GGG(x1, x2, x3, x4)  =  U18_GGG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)

The TRS R consists of the following rules:

lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)

The TRS R consists of the following rules:

lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))

The set Q consists of the following terms:

lessJ_in_gg(x0, x1)
U7_gg(x0, x1, x2)
lessI_in_gg(x0, x1)
U6_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PH_IN_GGG(T115, T116, T117) → U18_GGG(T115, T116, T117, lessJ_in_gg(T115, T116))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

  • U18_GGG(T115, T116, T117, lessJ_out_gg(T115, T116)) → ORDEREDG_IN_GG(T116, T117)
    The graph contains the following edges 2 >= 1, 4 > 1, 3 >= 2

  • ORDEREDG_IN_GG(T115, .(T116, T117)) → PH_IN_GGG(T115, T116, T117)
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → APPD_IN_GGA(T72, T73, X92)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
APPD_IN_GGA(x1, x2, x3)  =  APPD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPD_IN_GGA(.(T71, T72), T73, .(T71, X92)) → APPD_IN_GGA(T72, T73, X92)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPD_IN_GGA(x1, x2, x3)  =  APPD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPD_IN_GGA(.(T71, T72), T73) → APPD_IN_GGA(T72, T73)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPD_IN_GGA(.(T71, T72), T73) → APPD_IN_GGA(T72, T73)
    The graph contains the following edges 1 > 1, 2 >= 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → APPC_IN_AAAG(X63, T50, X64, T49)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(T48, X63), T50, X64, .(T48, T49)) → APPC_IN_AAAG(X63, T50, X64, T49)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(T48, T49)) → APPC_IN_AAAG(T49)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPC_IN_AAAG(.(T48, T49)) → APPC_IN_AAAG(T49)
    The graph contains the following edges 1 > 1

(34) YES

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93, X109, T94)
PM_IN_GGAA(T92, T93, T101, T94) → U16_GGAA(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101, T94)
PERME_IN_GA(T83, .(T86, T87)) → PF_IN_AAAGAA(X107, T86, X108, T83, X109, T87)

The TRS R consists of the following rules:

ssA_in_ga([], []) → ssA_out_ga([], [])
ssA_in_ga(T14, .(T17, T18)) → U1_ga(T14, T17, T18, pB_in_aaagaa(X23, T17, X24, T14, X25, T18))
pB_in_aaagaa(T23, T26, T24, T14, X25, T25) → U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_in_aaag(T23, T26, T24, T14))
appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U8_aaagaa(T23, T26, T24, T14, X25, T25, appC_out_aaag(T23, T26, T24, T14)) → U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_in_ggaag(T23, T24, X25, T25, T26))
pK_in_ggaag(T23, T24, T57, T25, T26) → U10_ggaag(T23, T24, T57, T25, T26, appD_in_gga(T23, T24, T57))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))
U10_ggaag(T23, T24, T57, T25, T26, appD_out_gga(T23, T24, T57)) → U11_ggaag(T23, T24, T57, T25, T26, pL_in_gag(T57, T25, T26))
pL_in_gag(T57, T76, T26) → U12_gag(T57, T76, T26, permE_in_ga(T57, T76))
permE_in_ga([], []) → permE_out_ga([], [])
permE_in_ga(T83, .(T86, T87)) → U4_ga(T83, T86, T87, pF_in_aaagaa(X107, T86, X108, T83, X109, T87))
pF_in_aaagaa(T92, T86, T93, T83, X109, T94) → U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_aaagaa(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_in_ggaa(T92, T93, X109, T94))
pM_in_ggaa(T92, T93, T101, T94) → U16_ggaa(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_ggaa(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → U17_ggaa(T92, T93, T101, T94, permE_in_ga(T101, T94))
U17_ggaa(T92, T93, T101, T94, permE_out_ga(T101, T94)) → pM_out_ggaa(T92, T93, T101, T94)
U15_aaagaa(T92, T86, T93, T83, X109, T94, pM_out_ggaa(T92, T93, X109, T94)) → pF_out_aaagaa(T92, T86, T93, T83, X109, T94)
U4_ga(T83, T86, T87, pF_out_aaagaa(X107, T86, X108, T83, X109, T87)) → permE_out_ga(T83, .(T86, T87))
U12_gag(T57, T76, T26, permE_out_ga(T57, T76)) → U13_gag(T57, T76, T26, orderedG_in_gg(T26, T76))
orderedG_in_gg(T108, []) → orderedG_out_gg(T108, [])
orderedG_in_gg(T115, .(T116, T117)) → U5_gg(T115, T116, T117, pH_in_ggg(T115, T116, T117))
pH_in_ggg(T115, T116, T117) → U18_ggg(T115, T116, T117, lessJ_in_gg(T115, T116))
lessJ_in_gg(0, T126) → lessJ_out_gg(0, T126)
lessJ_in_gg(s(T131), T132) → U7_gg(T131, T132, lessI_in_gg(T131, T132))
lessI_in_gg(0, s(T139)) → lessI_out_gg(0, s(T139))
lessI_in_gg(s(T144), s(T145)) → U6_gg(T144, T145, lessI_in_gg(T144, T145))
U6_gg(T144, T145, lessI_out_gg(T144, T145)) → lessI_out_gg(s(T144), s(T145))
U7_gg(T131, T132, lessI_out_gg(T131, T132)) → lessJ_out_gg(s(T131), T132)
U18_ggg(T115, T116, T117, lessJ_out_gg(T115, T116)) → U19_ggg(T115, T116, T117, orderedG_in_gg(T116, T117))
U19_ggg(T115, T116, T117, orderedG_out_gg(T116, T117)) → pH_out_ggg(T115, T116, T117)
U5_gg(T115, T116, T117, pH_out_ggg(T115, T116, T117)) → orderedG_out_gg(T115, .(T116, T117))
U13_gag(T57, T76, T26, orderedG_out_gg(T26, T76)) → pL_out_gag(T57, T76, T26)
U11_ggaag(T23, T24, T57, T25, T26, pL_out_gag(T57, T25, T26)) → pK_out_ggaag(T23, T24, T57, T25, T26)
U9_aaagaa(T23, T26, T24, T14, X25, T25, pK_out_ggaag(T23, T24, X25, T25, T26)) → pB_out_aaagaa(T23, T26, T24, T14, X25, T25)
U1_ga(T14, T17, T18, pB_out_aaagaa(X23, T17, X24, T14, X25, T18)) → ssA_out_ga(T14, .(T17, T18))

The argument filtering Pi contains the following mapping:
ssA_in_ga(x1, x2)  =  ssA_in_ga(x1)
[]  =  []
ssA_out_ga(x1, x2)  =  ssA_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
pB_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_in_aaagaa(x4)
U8_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U8_aaagaa(x4, x7)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U9_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U9_aaagaa(x1, x2, x3, x4, x7)
pK_in_ggaag(x1, x2, x3, x4, x5)  =  pK_in_ggaag(x1, x2, x5)
U10_ggaag(x1, x2, x3, x4, x5, x6)  =  U10_ggaag(x1, x2, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U11_ggaag(x1, x2, x3, x4, x5, x6)  =  U11_ggaag(x1, x2, x3, x5, x6)
pL_in_gag(x1, x2, x3)  =  pL_in_gag(x1, x3)
U12_gag(x1, x2, x3, x4)  =  U12_gag(x1, x3, x4)
permE_in_ga(x1, x2)  =  permE_in_ga(x1)
permE_out_ga(x1, x2)  =  permE_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
pF_in_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_in_aaagaa(x4)
U14_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U14_aaagaa(x4, x7)
U15_aaagaa(x1, x2, x3, x4, x5, x6, x7)  =  U15_aaagaa(x1, x2, x3, x4, x7)
pM_in_ggaa(x1, x2, x3, x4)  =  pM_in_ggaa(x1, x2)
U16_ggaa(x1, x2, x3, x4, x5)  =  U16_ggaa(x1, x2, x5)
U17_ggaa(x1, x2, x3, x4, x5)  =  U17_ggaa(x1, x2, x3, x5)
pM_out_ggaa(x1, x2, x3, x4)  =  pM_out_ggaa(x1, x2, x3, x4)
pF_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pF_out_aaagaa(x1, x2, x3, x4, x5, x6)
U13_gag(x1, x2, x3, x4)  =  U13_gag(x1, x2, x3, x4)
orderedG_in_gg(x1, x2)  =  orderedG_in_gg(x1, x2)
orderedG_out_gg(x1, x2)  =  orderedG_out_gg(x1, x2)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
pH_in_ggg(x1, x2, x3)  =  pH_in_ggg(x1, x2, x3)
U18_ggg(x1, x2, x3, x4)  =  U18_ggg(x1, x2, x3, x4)
lessJ_in_gg(x1, x2)  =  lessJ_in_gg(x1, x2)
0  =  0
lessJ_out_gg(x1, x2)  =  lessJ_out_gg(x1, x2)
s(x1)  =  s(x1)
U7_gg(x1, x2, x3)  =  U7_gg(x1, x2, x3)
lessI_in_gg(x1, x2)  =  lessI_in_gg(x1, x2)
lessI_out_gg(x1, x2)  =  lessI_out_gg(x1, x2)
U6_gg(x1, x2, x3)  =  U6_gg(x1, x2, x3)
U19_ggg(x1, x2, x3, x4)  =  U19_ggg(x1, x2, x3, x4)
pH_out_ggg(x1, x2, x3)  =  pH_out_ggg(x1, x2, x3)
pL_out_gag(x1, x2, x3)  =  pL_out_gag(x1, x2, x3)
pK_out_ggaag(x1, x2, x3, x4, x5)  =  pK_out_ggaag(x1, x2, x3, x4, x5)
pB_out_aaagaa(x1, x2, x3, x4, x5, x6)  =  pB_out_aaagaa(x1, x2, x3, x4, x5, x6)
PERME_IN_GA(x1, x2)  =  PERME_IN_GA(x1)
PF_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PF_IN_AAAGAA(x4)
U14_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U14_AAAGAA(x4, x7)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U16_GGAA(x1, x2, x3, x4, x5)  =  U16_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PF_IN_AAAGAA(T92, T86, T93, T83, X109, T94) → U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_in_aaag(T92, T86, T93, T83))
U14_AAAGAA(T92, T86, T93, T83, X109, T94, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93, X109, T94)
PM_IN_GGAA(T92, T93, T101, T94) → U16_GGAA(T92, T93, T101, T94, appD_in_gga(T92, T93, T101))
U16_GGAA(T92, T93, T101, T94, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101, T94)
PERME_IN_GA(T83, .(T86, T87)) → PF_IN_AAAGAA(X107, T86, X108, T83, X109, T87)

The TRS R consists of the following rules:

appC_in_aaag([], T39, T40, .(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, X63), T50, X64, .(T48, T49)) → U2_aaag(T48, X63, T50, X64, T49, appC_in_aaag(X63, T50, X64, T49))
appD_in_gga([], T64, T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73, .(T71, X92)) → U3_gga(T71, T72, T73, X92, appD_in_gga(T72, T73, X92))
U2_aaag(T48, X63, T50, X64, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U3_gga(T71, T72, T73, X92, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))

The argument filtering Pi contains the following mapping:
[]  =  []
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
appC_out_aaag(x1, x2, x3, x4)  =  appC_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
appD_in_gga(x1, x2, x3)  =  appD_in_gga(x1, x2)
appD_out_gga(x1, x2, x3)  =  appD_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
PERME_IN_GA(x1, x2)  =  PERME_IN_GA(x1)
PF_IN_AAAGAA(x1, x2, x3, x4, x5, x6)  =  PF_IN_AAAGAA(x4)
U14_AAAGAA(x1, x2, x3, x4, x5, x6, x7)  =  U14_AAAGAA(x4, x7)
PM_IN_GGAA(x1, x2, x3, x4)  =  PM_IN_GGAA(x1, x2)
U16_GGAA(x1, x2, x3, x4, x5)  =  U16_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PF_IN_AAAGAA(T83) → U14_AAAGAA(T83, appC_in_aaag(T83))
U14_AAAGAA(T83, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93)
PM_IN_GGAA(T92, T93) → U16_GGAA(T92, T93, appD_in_gga(T92, T93))
U16_GGAA(T92, T93, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101)
PERME_IN_GA(T83) → PF_IN_AAAGAA(T83)

The TRS R consists of the following rules:

appC_in_aaag(.(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, T49)) → U2_aaag(T48, T49, appC_in_aaag(T49))
appD_in_gga([], T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73) → U3_gga(T71, T72, T73, appD_in_gga(T72, T73))
U2_aaag(T48, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U3_gga(T71, T72, T73, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))

The set Q consists of the following terms:

appC_in_aaag(x0)
appD_in_gga(x0, x1)
U2_aaag(x0, x1, x2)
U3_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PERME_IN_GA(T83) → PF_IN_AAAGAA(T83)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(PERME_IN_GA(x1)) = 1 + x1   
POL(PF_IN_AAAGAA(x1)) = x1   
POL(PM_IN_GGAA(x1, x2)) = x1 + x2   
POL(U14_AAAGAA(x1, x2)) = x2   
POL(U16_GGAA(x1, x2, x3)) = x3   
POL(U2_aaag(x1, x2, x3)) = 1 + x3   
POL(U3_gga(x1, x2, x3, x4)) = 1 + x4   
POL([]) = 1   
POL(appC_in_aaag(x1)) = x1   
POL(appC_out_aaag(x1, x2, x3, x4)) = x1 + x3   
POL(appD_in_gga(x1, x2)) = x1 + x2   
POL(appD_out_gga(x1, x2, x3)) = 1 + x3   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

appC_in_aaag(.(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, T49)) → U2_aaag(T48, T49, appC_in_aaag(T49))
appD_in_gga([], T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73) → U3_gga(T71, T72, T73, appD_in_gga(T72, T73))
U2_aaag(T48, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U3_gga(T71, T72, T73, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PF_IN_AAAGAA(T83) → U14_AAAGAA(T83, appC_in_aaag(T83))
U14_AAAGAA(T83, appC_out_aaag(T92, T86, T93, T83)) → PM_IN_GGAA(T92, T93)
PM_IN_GGAA(T92, T93) → U16_GGAA(T92, T93, appD_in_gga(T92, T93))
U16_GGAA(T92, T93, appD_out_gga(T92, T93, T101)) → PERME_IN_GA(T101)

The TRS R consists of the following rules:

appC_in_aaag(.(T39, T40)) → appC_out_aaag([], T39, T40, .(T39, T40))
appC_in_aaag(.(T48, T49)) → U2_aaag(T48, T49, appC_in_aaag(T49))
appD_in_gga([], T64) → appD_out_gga([], T64, T64)
appD_in_gga(.(T71, T72), T73) → U3_gga(T71, T72, T73, appD_in_gga(T72, T73))
U2_aaag(T48, T49, appC_out_aaag(X63, T50, X64, T49)) → appC_out_aaag(.(T48, X63), T50, X64, .(T48, T49))
U3_gga(T71, T72, T73, appD_out_gga(T72, T73, X92)) → appD_out_gga(.(T71, T72), T73, .(T71, X92))

The set Q consists of the following terms:

appC_in_aaag(x0)
appD_in_gga(x0, x1)
U2_aaag(x0, x1, x2)
U3_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(42) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(43) TRUE