(0) Obligation:

Clauses:

prefix(Xs, Ys) :- app(Xs, X1, Ys).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Query: prefix(g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

prefixA_in_ga(T5, T7) → U1_ga(T5, T7, appB_in_gaa(T5, X6, T7))
appB_in_gaa([], T12, T12) → appB_out_gaa([], T12, T12)
appB_in_gaa(.(T19, T20), X31, .(T19, T22)) → U2_gaa(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
U2_gaa(T19, T20, X31, T22, appB_out_gaa(T20, X31, T22)) → appB_out_gaa(.(T19, T20), X31, .(T19, T22))
U1_ga(T5, T7, appB_out_gaa(T5, X6, T7)) → prefixA_out_ga(T5, T7)

The argument filtering Pi contains the following mapping:
prefixA_in_ga(x1, x2)  =  prefixA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
appB_in_gaa(x1, x2, x3)  =  appB_in_gaa(x1)
[]  =  []
appB_out_gaa(x1, x2, x3)  =  appB_out_gaa(x1)
.(x1, x2)  =  .(x1, x2)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x1, x2, x5)
prefixA_out_ga(x1, x2)  =  prefixA_out_ga(x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PREFIXA_IN_GA(T5, T7) → U1_GA(T5, T7, appB_in_gaa(T5, X6, T7))
PREFIXA_IN_GA(T5, T7) → APPB_IN_GAA(T5, X6, T7)
APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → U2_GAA(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → APPB_IN_GAA(T20, X31, T22)

The TRS R consists of the following rules:

prefixA_in_ga(T5, T7) → U1_ga(T5, T7, appB_in_gaa(T5, X6, T7))
appB_in_gaa([], T12, T12) → appB_out_gaa([], T12, T12)
appB_in_gaa(.(T19, T20), X31, .(T19, T22)) → U2_gaa(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
U2_gaa(T19, T20, X31, T22, appB_out_gaa(T20, X31, T22)) → appB_out_gaa(.(T19, T20), X31, .(T19, T22))
U1_ga(T5, T7, appB_out_gaa(T5, X6, T7)) → prefixA_out_ga(T5, T7)

The argument filtering Pi contains the following mapping:
prefixA_in_ga(x1, x2)  =  prefixA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
appB_in_gaa(x1, x2, x3)  =  appB_in_gaa(x1)
[]  =  []
appB_out_gaa(x1, x2, x3)  =  appB_out_gaa(x1)
.(x1, x2)  =  .(x1, x2)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x1, x2, x5)
prefixA_out_ga(x1, x2)  =  prefixA_out_ga(x1)
PREFIXA_IN_GA(x1, x2)  =  PREFIXA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
APPB_IN_GAA(x1, x2, x3)  =  APPB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4, x5)  =  U2_GAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PREFIXA_IN_GA(T5, T7) → U1_GA(T5, T7, appB_in_gaa(T5, X6, T7))
PREFIXA_IN_GA(T5, T7) → APPB_IN_GAA(T5, X6, T7)
APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → U2_GAA(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → APPB_IN_GAA(T20, X31, T22)

The TRS R consists of the following rules:

prefixA_in_ga(T5, T7) → U1_ga(T5, T7, appB_in_gaa(T5, X6, T7))
appB_in_gaa([], T12, T12) → appB_out_gaa([], T12, T12)
appB_in_gaa(.(T19, T20), X31, .(T19, T22)) → U2_gaa(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
U2_gaa(T19, T20, X31, T22, appB_out_gaa(T20, X31, T22)) → appB_out_gaa(.(T19, T20), X31, .(T19, T22))
U1_ga(T5, T7, appB_out_gaa(T5, X6, T7)) → prefixA_out_ga(T5, T7)

The argument filtering Pi contains the following mapping:
prefixA_in_ga(x1, x2)  =  prefixA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
appB_in_gaa(x1, x2, x3)  =  appB_in_gaa(x1)
[]  =  []
appB_out_gaa(x1, x2, x3)  =  appB_out_gaa(x1)
.(x1, x2)  =  .(x1, x2)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x1, x2, x5)
prefixA_out_ga(x1, x2)  =  prefixA_out_ga(x1)
PREFIXA_IN_GA(x1, x2)  =  PREFIXA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
APPB_IN_GAA(x1, x2, x3)  =  APPB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4, x5)  =  U2_GAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → APPB_IN_GAA(T20, X31, T22)

The TRS R consists of the following rules:

prefixA_in_ga(T5, T7) → U1_ga(T5, T7, appB_in_gaa(T5, X6, T7))
appB_in_gaa([], T12, T12) → appB_out_gaa([], T12, T12)
appB_in_gaa(.(T19, T20), X31, .(T19, T22)) → U2_gaa(T19, T20, X31, T22, appB_in_gaa(T20, X31, T22))
U2_gaa(T19, T20, X31, T22, appB_out_gaa(T20, X31, T22)) → appB_out_gaa(.(T19, T20), X31, .(T19, T22))
U1_ga(T5, T7, appB_out_gaa(T5, X6, T7)) → prefixA_out_ga(T5, T7)

The argument filtering Pi contains the following mapping:
prefixA_in_ga(x1, x2)  =  prefixA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
appB_in_gaa(x1, x2, x3)  =  appB_in_gaa(x1)
[]  =  []
appB_out_gaa(x1, x2, x3)  =  appB_out_gaa(x1)
.(x1, x2)  =  .(x1, x2)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x1, x2, x5)
prefixA_out_ga(x1, x2)  =  prefixA_out_ga(x1)
APPB_IN_GAA(x1, x2, x3)  =  APPB_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPB_IN_GAA(.(T19, T20), X31, .(T19, T22)) → APPB_IN_GAA(T20, X31, T22)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPB_IN_GAA(x1, x2, x3)  =  APPB_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPB_IN_GAA(.(T19, T20)) → APPB_IN_GAA(T20)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPB_IN_GAA(.(T19, T20)) → APPB_IN_GAA(T20)
    The graph contains the following edges 1 > 1

(12) YES