(0) Obligation:

Clauses:

mult(X1, 0, 0).
mult(X, s(Y), Z) :- ','(mult(X, Y, W), sum(W, X, Z)).
sum(X, 0, X).
sum(X, s(Y), s(Z)) :- sum(X, Y, Z).

Query: mult(g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MULTA_IN_GGA(T18, s(0), T13) → U1_GGA(T18, T13, sumB_in_ga(T18, T13))
MULTA_IN_GGA(T18, s(0), T13) → SUMB_IN_GA(T18, T13)
SUMB_IN_GA(s(T23), s(T25)) → U3_GA(T23, T25, sumB_in_ga(T23, T25))
SUMB_IN_GA(s(T23), s(T25)) → SUMB_IN_GA(T23, T25)
MULTA_IN_GGA(T30, s(s(T31)), T13) → U2_GGA(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
MULTA_IN_GGA(T30, s(s(T31)), T13) → PC_IN_GGAAA(T30, T31, X49, X50, T13)
PC_IN_GGAAA(T30, T31, T34, X50, T13) → U7_GGAAA(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
PC_IN_GGAAA(T30, T31, T34, X50, T13) → MULTD_IN_GGA(T30, T31, T34)
MULTD_IN_GGA(T46, s(T47), X73) → U4_GGA(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
MULTD_IN_GGA(T46, s(T47), X73) → PE_IN_GGAA(T46, T47, X72, X73)
PE_IN_GGAA(T46, T47, T50, X73) → U11_GGAA(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
PE_IN_GGAA(T46, T47, T50, X73) → MULTD_IN_GGA(T46, T47, T50)
U11_GGAA(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_GGAA(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
U11_GGAA(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → SUMF_IN_GGA(T50, T46, X73)
SUMF_IN_GGA(T64, s(T65), s(X96)) → U5_GGA(T64, T65, X96, sumF_in_gga(T64, T65, X96))
SUMF_IN_GGA(T64, s(T65), s(X96)) → SUMF_IN_GGA(T64, T65, X96)
U7_GGAAA(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_GGAAA(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
U7_GGAAA(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → PH_IN_GGAA(T34, T30, X50, T13)
PH_IN_GGAA(T34, T30, T70, T13) → U9_GGAA(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
PH_IN_GGAA(T34, T30, T70, T13) → SUMF_IN_GGA(T34, T30, T70)
U9_GGAA(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_GGAA(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
U9_GGAA(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → SUMG_IN_GGA(T70, T30, T13)
SUMG_IN_GGA(T86, s(T87), s(T89)) → U6_GGA(T86, T87, T89, sumG_in_gga(T86, T87, T89))
SUMG_IN_GGA(T86, s(T87), s(T89)) → SUMG_IN_GGA(T86, T87, T89)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
MULTA_IN_GGA(x1, x2, x3)  =  MULTA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
SUMB_IN_GA(x1, x2)  =  SUMB_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PC_IN_GGAAA(x1, x2, x3, x4, x5)  =  PC_IN_GGAAA(x1, x2)
U7_GGAAA(x1, x2, x3, x4, x5, x6)  =  U7_GGAAA(x1, x2, x6)
MULTD_IN_GGA(x1, x2, x3)  =  MULTD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PE_IN_GGAA(x1, x2, x3, x4)  =  PE_IN_GGAA(x1, x2)
U11_GGAA(x1, x2, x3, x4, x5)  =  U11_GGAA(x1, x2, x5)
U12_GGAA(x1, x2, x3, x4, x5)  =  U12_GGAA(x1, x2, x3, x5)
SUMF_IN_GGA(x1, x2, x3)  =  SUMF_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U8_GGAAA(x1, x2, x3, x4, x5, x6)  =  U8_GGAAA(x1, x2, x3, x6)
PH_IN_GGAA(x1, x2, x3, x4)  =  PH_IN_GGAA(x1, x2)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x1, x2, x5)
U10_GGAA(x1, x2, x3, x4, x5)  =  U10_GGAA(x1, x2, x3, x5)
SUMG_IN_GGA(x1, x2, x3)  =  SUMG_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTA_IN_GGA(T18, s(0), T13) → U1_GGA(T18, T13, sumB_in_ga(T18, T13))
MULTA_IN_GGA(T18, s(0), T13) → SUMB_IN_GA(T18, T13)
SUMB_IN_GA(s(T23), s(T25)) → U3_GA(T23, T25, sumB_in_ga(T23, T25))
SUMB_IN_GA(s(T23), s(T25)) → SUMB_IN_GA(T23, T25)
MULTA_IN_GGA(T30, s(s(T31)), T13) → U2_GGA(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
MULTA_IN_GGA(T30, s(s(T31)), T13) → PC_IN_GGAAA(T30, T31, X49, X50, T13)
PC_IN_GGAAA(T30, T31, T34, X50, T13) → U7_GGAAA(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
PC_IN_GGAAA(T30, T31, T34, X50, T13) → MULTD_IN_GGA(T30, T31, T34)
MULTD_IN_GGA(T46, s(T47), X73) → U4_GGA(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
MULTD_IN_GGA(T46, s(T47), X73) → PE_IN_GGAA(T46, T47, X72, X73)
PE_IN_GGAA(T46, T47, T50, X73) → U11_GGAA(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
PE_IN_GGAA(T46, T47, T50, X73) → MULTD_IN_GGA(T46, T47, T50)
U11_GGAA(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_GGAA(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
U11_GGAA(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → SUMF_IN_GGA(T50, T46, X73)
SUMF_IN_GGA(T64, s(T65), s(X96)) → U5_GGA(T64, T65, X96, sumF_in_gga(T64, T65, X96))
SUMF_IN_GGA(T64, s(T65), s(X96)) → SUMF_IN_GGA(T64, T65, X96)
U7_GGAAA(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_GGAAA(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
U7_GGAAA(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → PH_IN_GGAA(T34, T30, X50, T13)
PH_IN_GGAA(T34, T30, T70, T13) → U9_GGAA(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
PH_IN_GGAA(T34, T30, T70, T13) → SUMF_IN_GGA(T34, T30, T70)
U9_GGAA(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_GGAA(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
U9_GGAA(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → SUMG_IN_GGA(T70, T30, T13)
SUMG_IN_GGA(T86, s(T87), s(T89)) → U6_GGA(T86, T87, T89, sumG_in_gga(T86, T87, T89))
SUMG_IN_GGA(T86, s(T87), s(T89)) → SUMG_IN_GGA(T86, T87, T89)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
MULTA_IN_GGA(x1, x2, x3)  =  MULTA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
SUMB_IN_GA(x1, x2)  =  SUMB_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PC_IN_GGAAA(x1, x2, x3, x4, x5)  =  PC_IN_GGAAA(x1, x2)
U7_GGAAA(x1, x2, x3, x4, x5, x6)  =  U7_GGAAA(x1, x2, x6)
MULTD_IN_GGA(x1, x2, x3)  =  MULTD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PE_IN_GGAA(x1, x2, x3, x4)  =  PE_IN_GGAA(x1, x2)
U11_GGAA(x1, x2, x3, x4, x5)  =  U11_GGAA(x1, x2, x5)
U12_GGAA(x1, x2, x3, x4, x5)  =  U12_GGAA(x1, x2, x3, x5)
SUMF_IN_GGA(x1, x2, x3)  =  SUMF_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U8_GGAAA(x1, x2, x3, x4, x5, x6)  =  U8_GGAAA(x1, x2, x3, x6)
PH_IN_GGAA(x1, x2, x3, x4)  =  PH_IN_GGAA(x1, x2)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x1, x2, x5)
U10_GGAA(x1, x2, x3, x4, x5)  =  U10_GGAA(x1, x2, x3, x5)
SUMG_IN_GGA(x1, x2, x3)  =  SUMG_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 19 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMG_IN_GGA(T86, s(T87), s(T89)) → SUMG_IN_GGA(T86, T87, T89)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
SUMG_IN_GGA(x1, x2, x3)  =  SUMG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMG_IN_GGA(T86, s(T87), s(T89)) → SUMG_IN_GGA(T86, T87, T89)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUMG_IN_GGA(x1, x2, x3)  =  SUMG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUMG_IN_GGA(T86, s(T87)) → SUMG_IN_GGA(T86, T87)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUMG_IN_GGA(T86, s(T87)) → SUMG_IN_GGA(T86, T87)
    The graph contains the following edges 1 >= 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMF_IN_GGA(T64, s(T65), s(X96)) → SUMF_IN_GGA(T64, T65, X96)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
SUMF_IN_GGA(x1, x2, x3)  =  SUMF_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMF_IN_GGA(T64, s(T65), s(X96)) → SUMF_IN_GGA(T64, T65, X96)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUMF_IN_GGA(x1, x2, x3)  =  SUMF_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUMF_IN_GGA(T64, s(T65)) → SUMF_IN_GGA(T64, T65)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUMF_IN_GGA(T64, s(T65)) → SUMF_IN_GGA(T64, T65)
    The graph contains the following edges 1 >= 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTD_IN_GGA(T46, s(T47), X73) → PE_IN_GGAA(T46, T47, X72, X73)
PE_IN_GGAA(T46, T47, T50, X73) → MULTD_IN_GGA(T46, T47, T50)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
MULTD_IN_GGA(x1, x2, x3)  =  MULTD_IN_GGA(x1, x2)
PE_IN_GGAA(x1, x2, x3, x4)  =  PE_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULTD_IN_GGA(T46, s(T47), X73) → PE_IN_GGAA(T46, T47, X72, X73)
PE_IN_GGAA(T46, T47, T50, X73) → MULTD_IN_GGA(T46, T47, T50)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MULTD_IN_GGA(x1, x2, x3)  =  MULTD_IN_GGA(x1, x2)
PE_IN_GGAA(x1, x2, x3, x4)  =  PE_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULTD_IN_GGA(T46, s(T47)) → PE_IN_GGAA(T46, T47)
PE_IN_GGAA(T46, T47) → MULTD_IN_GGA(T46, T47)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PE_IN_GGAA(T46, T47) → MULTD_IN_GGA(T46, T47)
    The graph contains the following edges 1 >= 1, 2 >= 2

  • MULTD_IN_GGA(T46, s(T47)) → PE_IN_GGAA(T46, T47)
    The graph contains the following edges 1 >= 1, 2 > 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMB_IN_GA(s(T23), s(T25)) → SUMB_IN_GA(T23, T25)

The TRS R consists of the following rules:

multA_in_gga(T5, 0, 0) → multA_out_gga(T5, 0, 0)
multA_in_gga(T18, s(0), T13) → U1_gga(T18, T13, sumB_in_ga(T18, T13))
sumB_in_ga(0, 0) → sumB_out_ga(0, 0)
sumB_in_ga(s(T23), s(T25)) → U3_ga(T23, T25, sumB_in_ga(T23, T25))
U3_ga(T23, T25, sumB_out_ga(T23, T25)) → sumB_out_ga(s(T23), s(T25))
U1_gga(T18, T13, sumB_out_ga(T18, T13)) → multA_out_gga(T18, s(0), T13)
multA_in_gga(T30, s(s(T31)), T13) → U2_gga(T30, T31, T13, pC_in_ggaaa(T30, T31, X49, X50, T13))
pC_in_ggaaa(T30, T31, T34, X50, T13) → U7_ggaaa(T30, T31, T34, X50, T13, multD_in_gga(T30, T31, T34))
multD_in_gga(T41, 0, 0) → multD_out_gga(T41, 0, 0)
multD_in_gga(T46, s(T47), X73) → U4_gga(T46, T47, X73, pE_in_ggaa(T46, T47, X72, X73))
pE_in_ggaa(T46, T47, T50, X73) → U11_ggaa(T46, T47, T50, X73, multD_in_gga(T46, T47, T50))
U11_ggaa(T46, T47, T50, X73, multD_out_gga(T46, T47, T50)) → U12_ggaa(T46, T47, T50, X73, sumF_in_gga(T50, T46, X73))
sumF_in_gga(T59, 0, T59) → sumF_out_gga(T59, 0, T59)
sumF_in_gga(T64, s(T65), s(X96)) → U5_gga(T64, T65, X96, sumF_in_gga(T64, T65, X96))
U5_gga(T64, T65, X96, sumF_out_gga(T64, T65, X96)) → sumF_out_gga(T64, s(T65), s(X96))
U12_ggaa(T46, T47, T50, X73, sumF_out_gga(T50, T46, X73)) → pE_out_ggaa(T46, T47, T50, X73)
U4_gga(T46, T47, X73, pE_out_ggaa(T46, T47, X72, X73)) → multD_out_gga(T46, s(T47), X73)
U7_ggaaa(T30, T31, T34, X50, T13, multD_out_gga(T30, T31, T34)) → U8_ggaaa(T30, T31, T34, X50, T13, pH_in_ggaa(T34, T30, X50, T13))
pH_in_ggaa(T34, T30, T70, T13) → U9_ggaa(T34, T30, T70, T13, sumF_in_gga(T34, T30, T70))
U9_ggaa(T34, T30, T70, T13, sumF_out_gga(T34, T30, T70)) → U10_ggaa(T34, T30, T70, T13, sumG_in_gga(T70, T30, T13))
sumG_in_gga(T79, 0, T79) → sumG_out_gga(T79, 0, T79)
sumG_in_gga(T86, s(T87), s(T89)) → U6_gga(T86, T87, T89, sumG_in_gga(T86, T87, T89))
U6_gga(T86, T87, T89, sumG_out_gga(T86, T87, T89)) → sumG_out_gga(T86, s(T87), s(T89))
U10_ggaa(T34, T30, T70, T13, sumG_out_gga(T70, T30, T13)) → pH_out_ggaa(T34, T30, T70, T13)
U8_ggaaa(T30, T31, T34, X50, T13, pH_out_ggaa(T34, T30, X50, T13)) → pC_out_ggaaa(T30, T31, T34, X50, T13)
U2_gga(T30, T31, T13, pC_out_ggaaa(T30, T31, X49, X50, T13)) → multA_out_gga(T30, s(s(T31)), T13)

The argument filtering Pi contains the following mapping:
multA_in_gga(x1, x2, x3)  =  multA_in_gga(x1, x2)
0  =  0
multA_out_gga(x1, x2, x3)  =  multA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
sumB_in_ga(x1, x2)  =  sumB_in_ga(x1)
sumB_out_ga(x1, x2)  =  sumB_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_ggaaa(x1, x2, x3, x4, x5)  =  pC_in_ggaaa(x1, x2)
U7_ggaaa(x1, x2, x3, x4, x5, x6)  =  U7_ggaaa(x1, x2, x6)
multD_in_gga(x1, x2, x3)  =  multD_in_gga(x1, x2)
multD_out_gga(x1, x2, x3)  =  multD_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pE_in_ggaa(x1, x2, x3, x4)  =  pE_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
sumF_in_gga(x1, x2, x3)  =  sumF_in_gga(x1, x2)
sumF_out_gga(x1, x2, x3)  =  sumF_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
pE_out_ggaa(x1, x2, x3, x4)  =  pE_out_ggaa(x1, x2, x3, x4)
U8_ggaaa(x1, x2, x3, x4, x5, x6)  =  U8_ggaaa(x1, x2, x3, x6)
pH_in_ggaa(x1, x2, x3, x4)  =  pH_in_ggaa(x1, x2)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x1, x2, x5)
U10_ggaa(x1, x2, x3, x4, x5)  =  U10_ggaa(x1, x2, x3, x5)
sumG_in_gga(x1, x2, x3)  =  sumG_in_gga(x1, x2)
sumG_out_gga(x1, x2, x3)  =  sumG_out_gga(x1, x2, x3)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
pH_out_ggaa(x1, x2, x3, x4)  =  pH_out_ggaa(x1, x2, x3, x4)
pC_out_ggaaa(x1, x2, x3, x4, x5)  =  pC_out_ggaaa(x1, x2, x3, x4, x5)
SUMB_IN_GA(x1, x2)  =  SUMB_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUMB_IN_GA(s(T23), s(T25)) → SUMB_IN_GA(T23, T25)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUMB_IN_GA(x1, x2)  =  SUMB_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUMB_IN_GA(s(T23)) → SUMB_IN_GA(T23)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUMB_IN_GA(s(T23)) → SUMB_IN_GA(T23)
    The graph contains the following edges 1 > 1

(34) YES