(0) Obligation:

Clauses:

less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Query: less(a,g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

lessA_in_ag(0, s(T4)) → lessA_out_ag(0, s(T4))
lessA_in_ag(s(0), s(s(T14))) → lessA_out_ag(s(0), s(s(T14)))
lessA_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, lessA_in_ag(T21, T20))
lessA_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, lessA_in_ag(T40, T39))
U2_ag(T40, T39, lessA_out_ag(T40, T39)) → lessA_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, lessA_out_ag(T21, T20)) → lessA_out_ag(s(s(T21)), s(s(T20)))

The argument filtering Pi contains the following mapping:
lessA_in_ag(x1, x2)  =  lessA_in_ag(x2)
s(x1)  =  s(x1)
lessA_out_ag(x1, x2)  =  lessA_out_ag(x1, x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
U2_ag(x1, x2, x3)  =  U2_ag(x2, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

LESSA_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, lessA_in_ag(T21, T20))
LESSA_IN_AG(s(s(T21)), s(s(T20))) → LESSA_IN_AG(T21, T20)
LESSA_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, lessA_in_ag(T40, T39))

The TRS R consists of the following rules:

lessA_in_ag(0, s(T4)) → lessA_out_ag(0, s(T4))
lessA_in_ag(s(0), s(s(T14))) → lessA_out_ag(s(0), s(s(T14)))
lessA_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, lessA_in_ag(T21, T20))
lessA_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, lessA_in_ag(T40, T39))
U2_ag(T40, T39, lessA_out_ag(T40, T39)) → lessA_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, lessA_out_ag(T21, T20)) → lessA_out_ag(s(s(T21)), s(s(T20)))

The argument filtering Pi contains the following mapping:
lessA_in_ag(x1, x2)  =  lessA_in_ag(x2)
s(x1)  =  s(x1)
lessA_out_ag(x1, x2)  =  lessA_out_ag(x1, x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
U2_ag(x1, x2, x3)  =  U2_ag(x2, x3)
LESSA_IN_AG(x1, x2)  =  LESSA_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
U2_AG(x1, x2, x3)  =  U2_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSA_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, lessA_in_ag(T21, T20))
LESSA_IN_AG(s(s(T21)), s(s(T20))) → LESSA_IN_AG(T21, T20)
LESSA_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, lessA_in_ag(T40, T39))

The TRS R consists of the following rules:

lessA_in_ag(0, s(T4)) → lessA_out_ag(0, s(T4))
lessA_in_ag(s(0), s(s(T14))) → lessA_out_ag(s(0), s(s(T14)))
lessA_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, lessA_in_ag(T21, T20))
lessA_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, lessA_in_ag(T40, T39))
U2_ag(T40, T39, lessA_out_ag(T40, T39)) → lessA_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, lessA_out_ag(T21, T20)) → lessA_out_ag(s(s(T21)), s(s(T20)))

The argument filtering Pi contains the following mapping:
lessA_in_ag(x1, x2)  =  lessA_in_ag(x2)
s(x1)  =  s(x1)
lessA_out_ag(x1, x2)  =  lessA_out_ag(x1, x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
U2_ag(x1, x2, x3)  =  U2_ag(x2, x3)
LESSA_IN_AG(x1, x2)  =  LESSA_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
U2_AG(x1, x2, x3)  =  U2_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSA_IN_AG(s(s(T21)), s(s(T20))) → LESSA_IN_AG(T21, T20)

The TRS R consists of the following rules:

lessA_in_ag(0, s(T4)) → lessA_out_ag(0, s(T4))
lessA_in_ag(s(0), s(s(T14))) → lessA_out_ag(s(0), s(s(T14)))
lessA_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, lessA_in_ag(T21, T20))
lessA_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, lessA_in_ag(T40, T39))
U2_ag(T40, T39, lessA_out_ag(T40, T39)) → lessA_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, lessA_out_ag(T21, T20)) → lessA_out_ag(s(s(T21)), s(s(T20)))

The argument filtering Pi contains the following mapping:
lessA_in_ag(x1, x2)  =  lessA_in_ag(x2)
s(x1)  =  s(x1)
lessA_out_ag(x1, x2)  =  lessA_out_ag(x1, x2)
U1_ag(x1, x2, x3)  =  U1_ag(x2, x3)
U2_ag(x1, x2, x3)  =  U2_ag(x2, x3)
LESSA_IN_AG(x1, x2)  =  LESSA_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSA_IN_AG(s(s(T21)), s(s(T20))) → LESSA_IN_AG(T21, T20)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESSA_IN_AG(x1, x2)  =  LESSA_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSA_IN_AG(s(s(T20))) → LESSA_IN_AG(T20)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSA_IN_AG(s(s(T20))) → LESSA_IN_AG(T20)
    The graph contains the following edges 1 > 1

(12) YES