(0) Obligation:

Clauses:

p(X) :- q(X).
p(X) :- ','(no(q(X)), p(X)).
q(X).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).

Query: p(a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pA_in_a(T9) → pA_out_a(T9)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_a(T9) → pA_out_a(T9)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_a(T9) → pA_out_a(T9)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a

We have to consider all (P,R,Pi)-chains

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,R,Pi) chain.

(6) YES