(0) Obligation:
Clauses:
p(X) :- q(X).
p(X) :- ','(no(q(X)), p(X)).
q(X).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).
Query: p(a)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
pA_in_a(T9) → pA_out_a(T9)
The argument filtering Pi contains the following mapping:
pA_in_a(
x1) =
pA_in_a
pA_out_a(
x1) =
pA_out_a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
pA_in_a(T9) → pA_out_a(T9)
The argument filtering Pi contains the following mapping:
pA_in_a(
x1) =
pA_in_a
pA_out_a(
x1) =
pA_out_a
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
pA_in_a(T9) → pA_out_a(T9)
The argument filtering Pi contains the following mapping:
pA_in_a(
x1) =
pA_in_a
pA_out_a(
x1) =
pA_out_a
We have to consider all (P,R,Pi)-chains
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(6) YES