0 Prolog
↳1 PrologToPiTRSViaGraphTransformerProof (⇒, 68 ms)
↳2 PiTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 PiDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 PiDP
↳7 PiDPToQDPProof (⇔, 6 ms)
↳8 QDP
↳9 QDPSizeChangeProof (⇔, 3 ms)
↳10 YES
bin_treeA_in_g(void) → bin_treeA_out_g(void)
bin_treeA_in_g(tree(T19, T20, T21)) → U1_g(T19, T20, T21, pB_in_gg(T20, T21))
pB_in_gg(T20, T21) → U2_gg(T20, T21, bin_treeA_in_g(T20))
U2_gg(T20, T21, bin_treeA_out_g(T20)) → U3_gg(T20, T21, bin_treeA_in_g(T21))
U3_gg(T20, T21, bin_treeA_out_g(T21)) → pB_out_gg(T20, T21)
U1_g(T19, T20, T21, pB_out_gg(T20, T21)) → bin_treeA_out_g(tree(T19, T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → U1_G(T19, T20, T21, pB_in_gg(T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → PB_IN_GG(T20, T21)
PB_IN_GG(T20, T21) → U2_GG(T20, T21, bin_treeA_in_g(T20))
PB_IN_GG(T20, T21) → BIN_TREEA_IN_G(T20)
U2_GG(T20, T21, bin_treeA_out_g(T20)) → U3_GG(T20, T21, bin_treeA_in_g(T21))
U2_GG(T20, T21, bin_treeA_out_g(T20)) → BIN_TREEA_IN_G(T21)
bin_treeA_in_g(void) → bin_treeA_out_g(void)
bin_treeA_in_g(tree(T19, T20, T21)) → U1_g(T19, T20, T21, pB_in_gg(T20, T21))
pB_in_gg(T20, T21) → U2_gg(T20, T21, bin_treeA_in_g(T20))
U2_gg(T20, T21, bin_treeA_out_g(T20)) → U3_gg(T20, T21, bin_treeA_in_g(T21))
U3_gg(T20, T21, bin_treeA_out_g(T21)) → pB_out_gg(T20, T21)
U1_g(T19, T20, T21, pB_out_gg(T20, T21)) → bin_treeA_out_g(tree(T19, T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → U1_G(T19, T20, T21, pB_in_gg(T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → PB_IN_GG(T20, T21)
PB_IN_GG(T20, T21) → U2_GG(T20, T21, bin_treeA_in_g(T20))
PB_IN_GG(T20, T21) → BIN_TREEA_IN_G(T20)
U2_GG(T20, T21, bin_treeA_out_g(T20)) → U3_GG(T20, T21, bin_treeA_in_g(T21))
U2_GG(T20, T21, bin_treeA_out_g(T20)) → BIN_TREEA_IN_G(T21)
bin_treeA_in_g(void) → bin_treeA_out_g(void)
bin_treeA_in_g(tree(T19, T20, T21)) → U1_g(T19, T20, T21, pB_in_gg(T20, T21))
pB_in_gg(T20, T21) → U2_gg(T20, T21, bin_treeA_in_g(T20))
U2_gg(T20, T21, bin_treeA_out_g(T20)) → U3_gg(T20, T21, bin_treeA_in_g(T21))
U3_gg(T20, T21, bin_treeA_out_g(T21)) → pB_out_gg(T20, T21)
U1_g(T19, T20, T21, pB_out_gg(T20, T21)) → bin_treeA_out_g(tree(T19, T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → PB_IN_GG(T20, T21)
PB_IN_GG(T20, T21) → U2_GG(T20, T21, bin_treeA_in_g(T20))
U2_GG(T20, T21, bin_treeA_out_g(T20)) → BIN_TREEA_IN_G(T21)
PB_IN_GG(T20, T21) → BIN_TREEA_IN_G(T20)
bin_treeA_in_g(void) → bin_treeA_out_g(void)
bin_treeA_in_g(tree(T19, T20, T21)) → U1_g(T19, T20, T21, pB_in_gg(T20, T21))
pB_in_gg(T20, T21) → U2_gg(T20, T21, bin_treeA_in_g(T20))
U2_gg(T20, T21, bin_treeA_out_g(T20)) → U3_gg(T20, T21, bin_treeA_in_g(T21))
U3_gg(T20, T21, bin_treeA_out_g(T21)) → pB_out_gg(T20, T21)
U1_g(T19, T20, T21, pB_out_gg(T20, T21)) → bin_treeA_out_g(tree(T19, T20, T21))
BIN_TREEA_IN_G(tree(T19, T20, T21)) → PB_IN_GG(T20, T21)
PB_IN_GG(T20, T21) → U2_GG(T20, T21, bin_treeA_in_g(T20))
U2_GG(T20, T21, bin_treeA_out_g(T20)) → BIN_TREEA_IN_G(T21)
PB_IN_GG(T20, T21) → BIN_TREEA_IN_G(T20)
bin_treeA_in_g(void) → bin_treeA_out_g(void)
bin_treeA_in_g(tree(T19, T20, T21)) → U1_g(T19, T20, T21, pB_in_gg(T20, T21))
pB_in_gg(T20, T21) → U2_gg(T20, T21, bin_treeA_in_g(T20))
U2_gg(T20, T21, bin_treeA_out_g(T20)) → U3_gg(T20, T21, bin_treeA_in_g(T21))
U3_gg(T20, T21, bin_treeA_out_g(T21)) → pB_out_gg(T20, T21)
U1_g(T19, T20, T21, pB_out_gg(T20, T21)) → bin_treeA_out_g(tree(T19, T20, T21))
bin_treeA_in_g(x0)
pB_in_gg(x0, x1)
U2_gg(x0, x1, x2)
U3_gg(x0, x1, x2)
U1_g(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: