(0) Obligation:
Clauses:
select(X, Y, Zs) :- ','(no(empty(Y)), ','(head(Y, X), tail(Y, Zs))).
select(X, Y, Z) :- ','(no(empty(Y)), ','(head(Y, H), ','(head(Z, H), ','(tail(Y, T), ','(tail(Z, Zs), select(X, T, Zs)))))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
empty([]).
no(X) :- ','(X, ','(!, failure(a))).
no(X4).
failure(b).
Query: select(g,g,a)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
selectA_in_gga(T41, .(T41, T42), T42) → selectA_out_gga(T41, .(T41, T42), T42)
selectA_in_gga(T51, .(T83, T84), []) → U1_gga(T51, T83, T84, selectB_in_gg(T51, T84))
selectB_in_gg(T120, .(T120, [])) → selectB_out_gg(T120, .(T120, []))
selectB_in_gg(T127, .(T160, T161)) → U3_gg(T127, T160, T161, selectB_in_gg(T127, T161))
U3_gg(T127, T160, T161, selectB_out_gg(T127, T161)) → selectB_out_gg(T127, .(T160, T161))
U1_gga(T51, T83, T84, selectB_out_gg(T51, T84)) → selectA_out_gga(T51, .(T83, T84), [])
selectA_in_gga(T51, .(T196, T185), .(T196, T198)) → U2_gga(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
U2_gga(T51, T196, T185, T198, selectA_out_gga(T51, T185, T198)) → selectA_out_gga(T51, .(T196, T185), .(T196, T198))
The argument filtering Pi contains the following mapping:
selectA_in_gga(
x1,
x2,
x3) =
selectA_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
selectA_out_gga(
x1,
x2,
x3) =
selectA_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x3,
x4)
selectB_in_gg(
x1,
x2) =
selectB_in_gg(
x1,
x2)
[] =
[]
selectB_out_gg(
x1,
x2) =
selectB_out_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3,
x4) =
U3_gg(
x1,
x2,
x3,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5) =
U2_gga(
x1,
x2,
x3,
x5)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SELECTA_IN_GGA(T51, .(T83, T84), []) → U1_GGA(T51, T83, T84, selectB_in_gg(T51, T84))
SELECTA_IN_GGA(T51, .(T83, T84), []) → SELECTB_IN_GG(T51, T84)
SELECTB_IN_GG(T127, .(T160, T161)) → U3_GG(T127, T160, T161, selectB_in_gg(T127, T161))
SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → U2_GGA(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → SELECTA_IN_GGA(T51, T185, T198)
The TRS R consists of the following rules:
selectA_in_gga(T41, .(T41, T42), T42) → selectA_out_gga(T41, .(T41, T42), T42)
selectA_in_gga(T51, .(T83, T84), []) → U1_gga(T51, T83, T84, selectB_in_gg(T51, T84))
selectB_in_gg(T120, .(T120, [])) → selectB_out_gg(T120, .(T120, []))
selectB_in_gg(T127, .(T160, T161)) → U3_gg(T127, T160, T161, selectB_in_gg(T127, T161))
U3_gg(T127, T160, T161, selectB_out_gg(T127, T161)) → selectB_out_gg(T127, .(T160, T161))
U1_gga(T51, T83, T84, selectB_out_gg(T51, T84)) → selectA_out_gga(T51, .(T83, T84), [])
selectA_in_gga(T51, .(T196, T185), .(T196, T198)) → U2_gga(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
U2_gga(T51, T196, T185, T198, selectA_out_gga(T51, T185, T198)) → selectA_out_gga(T51, .(T196, T185), .(T196, T198))
The argument filtering Pi contains the following mapping:
selectA_in_gga(
x1,
x2,
x3) =
selectA_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
selectA_out_gga(
x1,
x2,
x3) =
selectA_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x3,
x4)
selectB_in_gg(
x1,
x2) =
selectB_in_gg(
x1,
x2)
[] =
[]
selectB_out_gg(
x1,
x2) =
selectB_out_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3,
x4) =
U3_gg(
x1,
x2,
x3,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5) =
U2_gga(
x1,
x2,
x3,
x5)
SELECTA_IN_GGA(
x1,
x2,
x3) =
SELECTA_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x3,
x4)
SELECTB_IN_GG(
x1,
x2) =
SELECTB_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3,
x4) =
U3_GG(
x1,
x2,
x3,
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SELECTA_IN_GGA(T51, .(T83, T84), []) → U1_GGA(T51, T83, T84, selectB_in_gg(T51, T84))
SELECTA_IN_GGA(T51, .(T83, T84), []) → SELECTB_IN_GG(T51, T84)
SELECTB_IN_GG(T127, .(T160, T161)) → U3_GG(T127, T160, T161, selectB_in_gg(T127, T161))
SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → U2_GGA(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → SELECTA_IN_GGA(T51, T185, T198)
The TRS R consists of the following rules:
selectA_in_gga(T41, .(T41, T42), T42) → selectA_out_gga(T41, .(T41, T42), T42)
selectA_in_gga(T51, .(T83, T84), []) → U1_gga(T51, T83, T84, selectB_in_gg(T51, T84))
selectB_in_gg(T120, .(T120, [])) → selectB_out_gg(T120, .(T120, []))
selectB_in_gg(T127, .(T160, T161)) → U3_gg(T127, T160, T161, selectB_in_gg(T127, T161))
U3_gg(T127, T160, T161, selectB_out_gg(T127, T161)) → selectB_out_gg(T127, .(T160, T161))
U1_gga(T51, T83, T84, selectB_out_gg(T51, T84)) → selectA_out_gga(T51, .(T83, T84), [])
selectA_in_gga(T51, .(T196, T185), .(T196, T198)) → U2_gga(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
U2_gga(T51, T196, T185, T198, selectA_out_gga(T51, T185, T198)) → selectA_out_gga(T51, .(T196, T185), .(T196, T198))
The argument filtering Pi contains the following mapping:
selectA_in_gga(
x1,
x2,
x3) =
selectA_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
selectA_out_gga(
x1,
x2,
x3) =
selectA_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x3,
x4)
selectB_in_gg(
x1,
x2) =
selectB_in_gg(
x1,
x2)
[] =
[]
selectB_out_gg(
x1,
x2) =
selectB_out_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3,
x4) =
U3_gg(
x1,
x2,
x3,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5) =
U2_gga(
x1,
x2,
x3,
x5)
SELECTA_IN_GGA(
x1,
x2,
x3) =
SELECTA_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x3,
x4)
SELECTB_IN_GG(
x1,
x2) =
SELECTB_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3,
x4) =
U3_GG(
x1,
x2,
x3,
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
The TRS R consists of the following rules:
selectA_in_gga(T41, .(T41, T42), T42) → selectA_out_gga(T41, .(T41, T42), T42)
selectA_in_gga(T51, .(T83, T84), []) → U1_gga(T51, T83, T84, selectB_in_gg(T51, T84))
selectB_in_gg(T120, .(T120, [])) → selectB_out_gg(T120, .(T120, []))
selectB_in_gg(T127, .(T160, T161)) → U3_gg(T127, T160, T161, selectB_in_gg(T127, T161))
U3_gg(T127, T160, T161, selectB_out_gg(T127, T161)) → selectB_out_gg(T127, .(T160, T161))
U1_gga(T51, T83, T84, selectB_out_gg(T51, T84)) → selectA_out_gga(T51, .(T83, T84), [])
selectA_in_gga(T51, .(T196, T185), .(T196, T198)) → U2_gga(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
U2_gga(T51, T196, T185, T198, selectA_out_gga(T51, T185, T198)) → selectA_out_gga(T51, .(T196, T185), .(T196, T198))
The argument filtering Pi contains the following mapping:
selectA_in_gga(
x1,
x2,
x3) =
selectA_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
selectA_out_gga(
x1,
x2,
x3) =
selectA_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x3,
x4)
selectB_in_gg(
x1,
x2) =
selectB_in_gg(
x1,
x2)
[] =
[]
selectB_out_gg(
x1,
x2) =
selectB_out_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3,
x4) =
U3_gg(
x1,
x2,
x3,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5) =
U2_gga(
x1,
x2,
x3,
x5)
SELECTB_IN_GG(
x1,
x2) =
SELECTB_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SELECTB_IN_GG(T127, .(T160, T161)) → SELECTB_IN_GG(T127, T161)
The graph contains the following edges 1 >= 1, 2 > 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → SELECTA_IN_GGA(T51, T185, T198)
The TRS R consists of the following rules:
selectA_in_gga(T41, .(T41, T42), T42) → selectA_out_gga(T41, .(T41, T42), T42)
selectA_in_gga(T51, .(T83, T84), []) → U1_gga(T51, T83, T84, selectB_in_gg(T51, T84))
selectB_in_gg(T120, .(T120, [])) → selectB_out_gg(T120, .(T120, []))
selectB_in_gg(T127, .(T160, T161)) → U3_gg(T127, T160, T161, selectB_in_gg(T127, T161))
U3_gg(T127, T160, T161, selectB_out_gg(T127, T161)) → selectB_out_gg(T127, .(T160, T161))
U1_gga(T51, T83, T84, selectB_out_gg(T51, T84)) → selectA_out_gga(T51, .(T83, T84), [])
selectA_in_gga(T51, .(T196, T185), .(T196, T198)) → U2_gga(T51, T196, T185, T198, selectA_in_gga(T51, T185, T198))
U2_gga(T51, T196, T185, T198, selectA_out_gga(T51, T185, T198)) → selectA_out_gga(T51, .(T196, T185), .(T196, T198))
The argument filtering Pi contains the following mapping:
selectA_in_gga(
x1,
x2,
x3) =
selectA_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
selectA_out_gga(
x1,
x2,
x3) =
selectA_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x3,
x4)
selectB_in_gg(
x1,
x2) =
selectB_in_gg(
x1,
x2)
[] =
[]
selectB_out_gg(
x1,
x2) =
selectB_out_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3,
x4) =
U3_gg(
x1,
x2,
x3,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5) =
U2_gga(
x1,
x2,
x3,
x5)
SELECTA_IN_GGA(
x1,
x2,
x3) =
SELECTA_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SELECTA_IN_GGA(T51, .(T196, T185), .(T196, T198)) → SELECTA_IN_GGA(T51, T185, T198)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
SELECTA_IN_GGA(
x1,
x2,
x3) =
SELECTA_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SELECTA_IN_GGA(T51, .(T196, T185)) → SELECTA_IN_GGA(T51, T185)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SELECTA_IN_GGA(T51, .(T196, T185)) → SELECTA_IN_GGA(T51, T185)
The graph contains the following edges 1 >= 1, 2 > 2
(20) YES