(0) Obligation:
Clauses:
overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X, Y) :- ','(no(empty(Y)), head(Y, X)).
member(X, Y) :- ','(no(empty(Y)), ','(tail(Y, T), member(X, T))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
empty([]).
no(X) :- ','(X, ','(!, failure(a))).
no(X4).
failure(b).
Query: overlap(g,g)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
memberA(T53, .(T53, T54)).
memberA(T60, .(T76, T77)) :- memberA(T60, T77).
pB(T28, .(T28, T29), T6) :- memberA(T28, T6).
pB(X133, .(T93, T94), T6) :- pB(X133, T94, T6).
overlapC(T5, T6) :- pB(X9, T5, T6).
Query: overlapC(g,g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
overlapC_in: (b,b)
pB_in: (f,b,b)
memberA_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAPC_IN_GG(T5, T6) → U4_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPC_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T28, .(T28, T29), T6) → U2_AGG(T28, T29, T6, memberA_in_gg(T28, T6))
PB_IN_AGG(T28, .(T28, T29), T6) → MEMBERA_IN_GG(T28, T6)
MEMBERA_IN_GG(T60, .(T76, T77)) → U1_GG(T60, T76, T77, memberA_in_gg(T60, T77))
MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
PB_IN_AGG(X133, .(T93, T94), T6) → U3_AGG(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
PB_IN_AGG(X133, .(T93, T94), T6) → PB_IN_AGG(X133, T94, T6)
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
OVERLAPC_IN_GG(
x1,
x2) =
OVERLAPC_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x3)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4) =
U2_AGG(
x1,
x4)
MEMBERA_IN_GG(
x1,
x2) =
MEMBERA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3,
x4) =
U1_GG(
x4)
U3_AGG(
x1,
x2,
x3,
x4,
x5) =
U3_AGG(
x5)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAPC_IN_GG(T5, T6) → U4_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPC_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T28, .(T28, T29), T6) → U2_AGG(T28, T29, T6, memberA_in_gg(T28, T6))
PB_IN_AGG(T28, .(T28, T29), T6) → MEMBERA_IN_GG(T28, T6)
MEMBERA_IN_GG(T60, .(T76, T77)) → U1_GG(T60, T76, T77, memberA_in_gg(T60, T77))
MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
PB_IN_AGG(X133, .(T93, T94), T6) → U3_AGG(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
PB_IN_AGG(X133, .(T93, T94), T6) → PB_IN_AGG(X133, T94, T6)
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
OVERLAPC_IN_GG(
x1,
x2) =
OVERLAPC_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x3)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4) =
U2_AGG(
x1,
x4)
MEMBERA_IN_GG(
x1,
x2) =
MEMBERA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3,
x4) =
U1_GG(
x4)
U3_AGG(
x1,
x2,
x3,
x4,
x5) =
U3_AGG(
x5)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
MEMBERA_IN_GG(
x1,
x2) =
MEMBERA_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MEMBERA_IN_GG(T60, .(T76, T77)) → MEMBERA_IN_GG(T60, T77)
The graph contains the following edges 1 >= 1, 2 > 2
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(X133, .(T93, T94), T6) → PB_IN_AGG(X133, T94, T6)
The TRS R consists of the following rules:
overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T28, .(T28, T29), T6) → U2_agg(T28, T29, T6, memberA_in_gg(T28, T6))
memberA_in_gg(T53, .(T53, T54)) → memberA_out_gg(T53, .(T53, T54))
memberA_in_gg(T60, .(T76, T77)) → U1_gg(T60, T76, T77, memberA_in_gg(T60, T77))
U1_gg(T60, T76, T77, memberA_out_gg(T60, T77)) → memberA_out_gg(T60, .(T76, T77))
U2_agg(T28, T29, T6, memberA_out_gg(T28, T6)) → pB_out_agg(T28, .(T28, T29), T6)
pB_in_agg(X133, .(T93, T94), T6) → U3_agg(X133, T93, T94, T6, pB_in_agg(X133, T94, T6))
U3_agg(X133, T93, T94, T6, pB_out_agg(X133, T94, T6)) → pB_out_agg(X133, .(T93, T94), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapC_in_gg(
x1,
x2) =
overlapC_in_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4) =
U2_agg(
x1,
x4)
memberA_in_gg(
x1,
x2) =
memberA_in_gg(
x1,
x2)
memberA_out_gg(
x1,
x2) =
memberA_out_gg
U1_gg(
x1,
x2,
x3,
x4) =
U1_gg(
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1)
U3_agg(
x1,
x2,
x3,
x4,
x5) =
U3_agg(
x5)
overlapC_out_gg(
x1,
x2) =
overlapC_out_gg
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(X133, .(T93, T94), T6) → PB_IN_AGG(X133, T94, T6)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(.(T93, T94), T6) → PB_IN_AGG(T94, T6)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PB_IN_AGG(.(T93, T94), T6) → PB_IN_AGG(T94, T6)
The graph contains the following edges 1 > 1, 2 >= 2
(22) YES