(0) Obligation:
Clauses:
overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X1, []) :- ','(!, failure(a)).
member(X, Y) :- head(Y, X).
member(X, Y) :- ','(tail(Y, T), member(X, T)).
head([], X2).
head(.(H, X3), H).
tail([], []).
tail(.(X4, T), T).
failure(b).
Query: overlap(g,g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlapA_in_gg(T5, T6) → U1_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U3_agg(T16, T17, T6, memberC_in_gg(T16, T6))
memberC_in_gg(T37, .(T37, T38)) → memberC_out_gg(T37, .(T37, T38))
memberC_in_gg(T44, .(T51, T52)) → U2_gg(T44, T51, T52, memberC_in_gg(T44, T52))
U2_gg(T44, T51, T52, memberC_out_gg(T44, T52)) → memberC_out_gg(T44, .(T51, T52))
U3_agg(T16, T17, T6, memberC_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U4_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U4_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U1_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapA_in_gg(
x1,
x2) =
overlapA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_agg(
x1,
x2,
x3,
x4) =
U3_agg(
x1,
x2,
x3,
x4)
memberC_in_gg(
x1,
x2) =
memberC_in_gg(
x1,
x2)
memberC_out_gg(
x1,
x2) =
memberC_out_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x2,
x3,
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1,
x2,
x3)
U4_agg(
x1,
x2,
x3,
x4,
x5) =
U4_agg(
x2,
x3,
x4,
x5)
overlapA_out_gg(
x1,
x2) =
overlapA_out_gg(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAPA_IN_GG(T5, T6) → U1_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPA_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T16, .(T16, T17), T6) → U3_AGG(T16, T17, T6, memberC_in_gg(T16, T6))
PB_IN_AGG(T16, .(T16, T17), T6) → MEMBERC_IN_GG(T16, T6)
MEMBERC_IN_GG(T44, .(T51, T52)) → U2_GG(T44, T51, T52, memberC_in_gg(T44, T52))
MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
PB_IN_AGG(X97, .(T61, T62), T6) → U4_AGG(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)
The TRS R consists of the following rules:
overlapA_in_gg(T5, T6) → U1_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U3_agg(T16, T17, T6, memberC_in_gg(T16, T6))
memberC_in_gg(T37, .(T37, T38)) → memberC_out_gg(T37, .(T37, T38))
memberC_in_gg(T44, .(T51, T52)) → U2_gg(T44, T51, T52, memberC_in_gg(T44, T52))
U2_gg(T44, T51, T52, memberC_out_gg(T44, T52)) → memberC_out_gg(T44, .(T51, T52))
U3_agg(T16, T17, T6, memberC_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U4_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U4_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U1_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapA_in_gg(
x1,
x2) =
overlapA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_agg(
x1,
x2,
x3,
x4) =
U3_agg(
x1,
x2,
x3,
x4)
memberC_in_gg(
x1,
x2) =
memberC_in_gg(
x1,
x2)
memberC_out_gg(
x1,
x2) =
memberC_out_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x2,
x3,
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1,
x2,
x3)
U4_agg(
x1,
x2,
x3,
x4,
x5) =
U4_agg(
x2,
x3,
x4,
x5)
overlapA_out_gg(
x1,
x2) =
overlapA_out_gg(
x1,
x2)
OVERLAPA_IN_GG(
x1,
x2) =
OVERLAPA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
U3_AGG(
x1,
x2,
x3,
x4) =
U3_AGG(
x1,
x2,
x3,
x4)
MEMBERC_IN_GG(
x1,
x2) =
MEMBERC_IN_GG(
x1,
x2)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x1,
x2,
x3,
x4)
U4_AGG(
x1,
x2,
x3,
x4,
x5) =
U4_AGG(
x2,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAPA_IN_GG(T5, T6) → U1_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPA_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T16, .(T16, T17), T6) → U3_AGG(T16, T17, T6, memberC_in_gg(T16, T6))
PB_IN_AGG(T16, .(T16, T17), T6) → MEMBERC_IN_GG(T16, T6)
MEMBERC_IN_GG(T44, .(T51, T52)) → U2_GG(T44, T51, T52, memberC_in_gg(T44, T52))
MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
PB_IN_AGG(X97, .(T61, T62), T6) → U4_AGG(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)
The TRS R consists of the following rules:
overlapA_in_gg(T5, T6) → U1_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U3_agg(T16, T17, T6, memberC_in_gg(T16, T6))
memberC_in_gg(T37, .(T37, T38)) → memberC_out_gg(T37, .(T37, T38))
memberC_in_gg(T44, .(T51, T52)) → U2_gg(T44, T51, T52, memberC_in_gg(T44, T52))
U2_gg(T44, T51, T52, memberC_out_gg(T44, T52)) → memberC_out_gg(T44, .(T51, T52))
U3_agg(T16, T17, T6, memberC_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U4_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U4_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U1_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapA_in_gg(
x1,
x2) =
overlapA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_agg(
x1,
x2,
x3,
x4) =
U3_agg(
x1,
x2,
x3,
x4)
memberC_in_gg(
x1,
x2) =
memberC_in_gg(
x1,
x2)
memberC_out_gg(
x1,
x2) =
memberC_out_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x2,
x3,
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1,
x2,
x3)
U4_agg(
x1,
x2,
x3,
x4,
x5) =
U4_agg(
x2,
x3,
x4,
x5)
overlapA_out_gg(
x1,
x2) =
overlapA_out_gg(
x1,
x2)
OVERLAPA_IN_GG(
x1,
x2) =
OVERLAPA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
U3_AGG(
x1,
x2,
x3,
x4) =
U3_AGG(
x1,
x2,
x3,
x4)
MEMBERC_IN_GG(
x1,
x2) =
MEMBERC_IN_GG(
x1,
x2)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x1,
x2,
x3,
x4)
U4_AGG(
x1,
x2,
x3,
x4,
x5) =
U4_AGG(
x2,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
The TRS R consists of the following rules:
overlapA_in_gg(T5, T6) → U1_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U3_agg(T16, T17, T6, memberC_in_gg(T16, T6))
memberC_in_gg(T37, .(T37, T38)) → memberC_out_gg(T37, .(T37, T38))
memberC_in_gg(T44, .(T51, T52)) → U2_gg(T44, T51, T52, memberC_in_gg(T44, T52))
U2_gg(T44, T51, T52, memberC_out_gg(T44, T52)) → memberC_out_gg(T44, .(T51, T52))
U3_agg(T16, T17, T6, memberC_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U4_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U4_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U1_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapA_in_gg(
x1,
x2) =
overlapA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_agg(
x1,
x2,
x3,
x4) =
U3_agg(
x1,
x2,
x3,
x4)
memberC_in_gg(
x1,
x2) =
memberC_in_gg(
x1,
x2)
memberC_out_gg(
x1,
x2) =
memberC_out_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x2,
x3,
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1,
x2,
x3)
U4_agg(
x1,
x2,
x3,
x4,
x5) =
U4_agg(
x2,
x3,
x4,
x5)
overlapA_out_gg(
x1,
x2) =
overlapA_out_gg(
x1,
x2)
MEMBERC_IN_GG(
x1,
x2) =
MEMBERC_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MEMBERC_IN_GG(T44, .(T51, T52)) → MEMBERC_IN_GG(T44, T52)
The graph contains the following edges 1 >= 1, 2 > 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)
The TRS R consists of the following rules:
overlapA_in_gg(T5, T6) → U1_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U3_agg(T16, T17, T6, memberC_in_gg(T16, T6))
memberC_in_gg(T37, .(T37, T38)) → memberC_out_gg(T37, .(T37, T38))
memberC_in_gg(T44, .(T51, T52)) → U2_gg(T44, T51, T52, memberC_in_gg(T44, T52))
U2_gg(T44, T51, T52, memberC_out_gg(T44, T52)) → memberC_out_gg(T44, .(T51, T52))
U3_agg(T16, T17, T6, memberC_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U4_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U4_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U1_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
overlapA_in_gg(
x1,
x2) =
overlapA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
pB_in_agg(
x1,
x2,
x3) =
pB_in_agg(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_agg(
x1,
x2,
x3,
x4) =
U3_agg(
x1,
x2,
x3,
x4)
memberC_in_gg(
x1,
x2) =
memberC_in_gg(
x1,
x2)
memberC_out_gg(
x1,
x2) =
memberC_out_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x2,
x3,
x4)
pB_out_agg(
x1,
x2,
x3) =
pB_out_agg(
x1,
x2,
x3)
U4_agg(
x1,
x2,
x3,
x4,
x5) =
U4_agg(
x2,
x3,
x4,
x5)
overlapA_out_gg(
x1,
x2) =
overlapA_out_gg(
x1,
x2)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
PB_IN_AGG(
x1,
x2,
x3) =
PB_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PB_IN_AGG(.(T61, T62), T6) → PB_IN_AGG(T62, T6)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PB_IN_AGG(.(T61, T62), T6) → PB_IN_AGG(T62, T6)
The graph contains the following edges 1 > 1, 2 >= 2
(20) YES