(0) Obligation:

Clauses:

ordered([]).
ordered(.(X1, [])).
ordered(Xs) :- ','(no(max1el_list(Xs)), ','(head(Xs, X), ','(tail(Xs, Ys), ','(head(Ys, Y), ','(tail(Ys, Zs), ','(less(X, s(Y)), ordered(.(Y, Zs)))))))).
head([], X2).
head(.(X, X3), X).
tail([], []).
tail(.(X4, Xs), Xs).
less(0, s(X5)).
less(X, Y) :- ','(no(zero(X)), ','(p(X, Px), ','(p(Y, Py), less(Px, Py)))).
p(0, 0).
p(s(X), X).
max1el_list([]).
max1el_list(.(X6, [])).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X7).
failure(b).

Query: ordered(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ORDEREDA_IN_G(.(T31, .(T47, T48))) → U1_G(T31, T47, T48, pB_in_ggg(T31, T47, T48))
ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
PB_IN_GGG(T31, T47, T48) → LESSE_IN_GG(T31, T47)
LESSE_IN_GG(s(T72), T77) → U5_GG(T72, T77, lessD_in_gg(T72, T77))
LESSE_IN_GG(s(T72), T77) → LESSD_IN_GG(T72, T77)
LESSD_IN_GG(s(T99), 0) → U3_GG(T99, lessC_in_g(T99))
LESSD_IN_GG(s(T99), 0) → LESSC_IN_G(T99)
LESSC_IN_G(s(T111)) → U2_G(T111, lessC_in_g(T111))
LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)
LESSD_IN_GG(s(T99), s(T114)) → U4_GG(T99, T114, lessD_in_gg(T99, T114))
LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_GGG(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDEREDA_IN_G(.(T31, .(T47, T48))) → U1_G(T31, T47, T48, pB_in_ggg(T31, T47, T48))
ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
PB_IN_GGG(T31, T47, T48) → LESSE_IN_GG(T31, T47)
LESSE_IN_GG(s(T72), T77) → U5_GG(T72, T77, lessD_in_gg(T72, T77))
LESSE_IN_GG(s(T72), T77) → LESSD_IN_GG(T72, T77)
LESSD_IN_GG(s(T99), 0) → U3_GG(T99, lessC_in_g(T99))
LESSD_IN_GG(s(T99), 0) → LESSC_IN_G(T99)
LESSC_IN_G(s(T111)) → U2_G(T111, lessC_in_g(T111))
LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)
LESSD_IN_GG(s(T99), s(T114)) → U4_GG(T99, T114, lessD_in_gg(T99, T114))
LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_GGG(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)

The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSC_IN_G(s(T111)) → LESSC_IN_G(T111)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)

The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESSD_IN_GG(s(T99), s(T114)) → LESSD_IN_GG(T99, T114)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

orderedA_in_g([]) → orderedA_out_g([])
orderedA_in_g(.(T3, [])) → orderedA_out_g(.(T3, []))
orderedA_in_g(.(T31, .(T47, T48))) → U1_g(T31, T47, T48, pB_in_ggg(T31, T47, T48))
pB_in_ggg(T31, T47, T48) → U6_ggg(T31, T47, T48, lessE_in_gg(T31, T47))
lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
U6_ggg(T31, T47, T48, lessE_out_gg(T31, T47)) → U7_ggg(T31, T47, T48, orderedA_in_g(.(T47, T48)))
U7_ggg(T31, T47, T48, orderedA_out_g(.(T47, T48))) → pB_out_ggg(T31, T47, T48)
U1_g(T31, T47, T48, pB_out_ggg(T31, T47, T48)) → orderedA_out_g(.(T31, .(T47, T48)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))

The set Q consists of the following terms:

lessE_in_gg(x0, x1)
U5_gg(x0, x1, x2)
lessD_in_gg(x0, x1)
U3_gg(x0, x1)
U4_gg(x0, x1, x2)
lessC_in_g(x0)
U2_g(x0, x1)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


ORDEREDA_IN_G(.(T31, .(T47, T48))) → PB_IN_GGG(T31, T47, T48)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(0) = 0   
POL(ORDEREDA_IN_G(x1)) = x1   
POL(PB_IN_GGG(x1, x2, x3)) = 1 + x3   
POL(U2_g(x1, x2)) = 0   
POL(U3_gg(x1, x2)) = 0   
POL(U4_gg(x1, x2, x3)) = 0   
POL(U5_gg(x1, x2, x3)) = 0   
POL(U6_GGG(x1, x2, x3, x4)) = 1 + x3   
POL(lessC_in_g(x1)) = 0   
POL(lessC_out_g(x1)) = 0   
POL(lessD_in_gg(x1, x2)) = 0   
POL(lessD_out_gg(x1, x2)) = 0   
POL(lessE_in_gg(x1, x2)) = 0   
POL(lessE_out_gg(x1, x2)) = 0   
POL(s(x1)) = 0   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PB_IN_GGG(T31, T47, T48) → U6_GGG(T31, T47, T48, lessE_in_gg(T31, T47))
U6_GGG(T31, T47, T48, lessE_out_gg(T31, T47)) → ORDEREDA_IN_G(.(T47, T48))

The TRS R consists of the following rules:

lessE_in_gg(0, T57) → lessE_out_gg(0, T57)
lessE_in_gg(s(T72), T77) → U5_gg(T72, T77, lessD_in_gg(T72, T77))
U5_gg(T72, T77, lessD_out_gg(T72, T77)) → lessE_out_gg(s(T72), T77)
lessD_in_gg(0, s(T84)) → lessD_out_gg(0, s(T84))
lessD_in_gg(s(T99), 0) → U3_gg(T99, lessC_in_g(T99))
lessD_in_gg(s(T99), s(T114)) → U4_gg(T99, T114, lessD_in_gg(T99, T114))
U3_gg(T99, lessC_out_g(T99)) → lessD_out_gg(s(T99), 0)
U4_gg(T99, T114, lessD_out_gg(T99, T114)) → lessD_out_gg(s(T99), s(T114))
lessC_in_g(s(T111)) → U2_g(T111, lessC_in_g(T111))
U2_g(T111, lessC_out_g(T111)) → lessC_out_g(s(T111))

The set Q consists of the following terms:

lessE_in_gg(x0, x1)
U5_gg(x0, x1, x2)
lessD_in_gg(x0, x1)
U3_gg(x0, x1)
U4_gg(x0, x1, x2)
lessC_in_g(x0)
U2_g(x0, x1)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(29) TRUE