(0) Obligation:

Clauses:

map([], L) :- ','(!, eq(L, [])).
map(X, .(Y, Ys)) :- ','(head(X, H), ','(tail(X, T), ','(p(H, Y), map(T, Ys)))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
p(X, Y).
eq(X, X).

Query: map(g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

mapA([], []).
mapA(.(T38, T30), .(T39, T40)) :- mapA(T30, T40).

Query: mapA(g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
mapA_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

mapA_in_ga([], []) → mapA_out_ga([], [])
mapA_in_ga(.(T38, T30), .(T39, T40)) → U1_ga(T38, T30, T39, T40, mapA_in_ga(T30, T40))
U1_ga(T38, T30, T39, T40, mapA_out_ga(T30, T40)) → mapA_out_ga(.(T38, T30), .(T39, T40))

The argument filtering Pi contains the following mapping:
mapA_in_ga(x1, x2)  =  mapA_in_ga(x1)
[]  =  []
mapA_out_ga(x1, x2)  =  mapA_out_ga(x2)
.(x1, x2)  =  .(x2)
U1_ga(x1, x2, x3, x4, x5)  =  U1_ga(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

mapA_in_ga([], []) → mapA_out_ga([], [])
mapA_in_ga(.(T38, T30), .(T39, T40)) → U1_ga(T38, T30, T39, T40, mapA_in_ga(T30, T40))
U1_ga(T38, T30, T39, T40, mapA_out_ga(T30, T40)) → mapA_out_ga(.(T38, T30), .(T39, T40))

The argument filtering Pi contains the following mapping:
mapA_in_ga(x1, x2)  =  mapA_in_ga(x1)
[]  =  []
mapA_out_ga(x1, x2)  =  mapA_out_ga(x2)
.(x1, x2)  =  .(x2)
U1_ga(x1, x2, x3, x4, x5)  =  U1_ga(x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MAPA_IN_GA(.(T38, T30), .(T39, T40)) → U1_GA(T38, T30, T39, T40, mapA_in_ga(T30, T40))
MAPA_IN_GA(.(T38, T30), .(T39, T40)) → MAPA_IN_GA(T30, T40)

The TRS R consists of the following rules:

mapA_in_ga([], []) → mapA_out_ga([], [])
mapA_in_ga(.(T38, T30), .(T39, T40)) → U1_ga(T38, T30, T39, T40, mapA_in_ga(T30, T40))
U1_ga(T38, T30, T39, T40, mapA_out_ga(T30, T40)) → mapA_out_ga(.(T38, T30), .(T39, T40))

The argument filtering Pi contains the following mapping:
mapA_in_ga(x1, x2)  =  mapA_in_ga(x1)
[]  =  []
mapA_out_ga(x1, x2)  =  mapA_out_ga(x2)
.(x1, x2)  =  .(x2)
U1_ga(x1, x2, x3, x4, x5)  =  U1_ga(x5)
MAPA_IN_GA(x1, x2)  =  MAPA_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5)  =  U1_GA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MAPA_IN_GA(.(T38, T30), .(T39, T40)) → U1_GA(T38, T30, T39, T40, mapA_in_ga(T30, T40))
MAPA_IN_GA(.(T38, T30), .(T39, T40)) → MAPA_IN_GA(T30, T40)

The TRS R consists of the following rules:

mapA_in_ga([], []) → mapA_out_ga([], [])
mapA_in_ga(.(T38, T30), .(T39, T40)) → U1_ga(T38, T30, T39, T40, mapA_in_ga(T30, T40))
U1_ga(T38, T30, T39, T40, mapA_out_ga(T30, T40)) → mapA_out_ga(.(T38, T30), .(T39, T40))

The argument filtering Pi contains the following mapping:
mapA_in_ga(x1, x2)  =  mapA_in_ga(x1)
[]  =  []
mapA_out_ga(x1, x2)  =  mapA_out_ga(x2)
.(x1, x2)  =  .(x2)
U1_ga(x1, x2, x3, x4, x5)  =  U1_ga(x5)
MAPA_IN_GA(x1, x2)  =  MAPA_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5)  =  U1_GA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MAPA_IN_GA(.(T38, T30), .(T39, T40)) → MAPA_IN_GA(T30, T40)

The TRS R consists of the following rules:

mapA_in_ga([], []) → mapA_out_ga([], [])
mapA_in_ga(.(T38, T30), .(T39, T40)) → U1_ga(T38, T30, T39, T40, mapA_in_ga(T30, T40))
U1_ga(T38, T30, T39, T40, mapA_out_ga(T30, T40)) → mapA_out_ga(.(T38, T30), .(T39, T40))

The argument filtering Pi contains the following mapping:
mapA_in_ga(x1, x2)  =  mapA_in_ga(x1)
[]  =  []
mapA_out_ga(x1, x2)  =  mapA_out_ga(x2)
.(x1, x2)  =  .(x2)
U1_ga(x1, x2, x3, x4, x5)  =  U1_ga(x5)
MAPA_IN_GA(x1, x2)  =  MAPA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MAPA_IN_GA(.(T38, T30), .(T39, T40)) → MAPA_IN_GA(T30, T40)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
MAPA_IN_GA(x1, x2)  =  MAPA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MAPA_IN_GA(.(T30)) → MAPA_IN_GA(T30)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MAPA_IN_GA(.(T30)) → MAPA_IN_GA(T30)
    The graph contains the following edges 1 > 1

(14) YES