(0) Obligation:
Clauses:
list([]) :- !.
list(X) :- ','(tail(X, T), list(T)).
tail([], []).
tail(.(X, Xs), Xs).
Query: list(g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
Pi is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
Pi is empty.
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
Pi is empty.
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
Pi is empty.
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The graph contains the following edges 1 > 1
(12) YES